Towards Simulation- and Mining-based Translation of Resource-aware Process Models

  • Lars Ackermann
  • Stefan Schönig
  • Stefan Jablonski
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 281)


Imperative languages like BPMN are eminently suitable for representing routine processes and are likewise cumbersome in case of flexible processes. The latter are easier to describe using declarative process modeling languages (DPMLs). However, understandability and tool support of DPMLs are comparatively poor. Additionally, there may be an affinity to a particular language caused by existing company infrastructure or individual preferences. Hence, a technique for automatically translating process models between different languages is required. Process models usually describe several aspects of a process, such as activity orderings and role assignments. Therefore, our approach focuses on translating resource-aware process models. We utilize well-established techniques for process simulation and mining to avoid the definition of cumbersome model transformation rules. Our implementation is based on a discussion of general configuration principles and a concrete configuration suggestion. The whole translation approach is discussed and evaluated at the example of BPMN and DPIL.


Process model translation Simulation Process mining 


  1. 1.
    Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal, S.: Declarative versus imperative process modeling languages: the issue of understandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01862-6_29 CrossRefGoogle Scholar
  2. 2.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28108-2_37 CrossRefGoogle Scholar
  3. 3.
    Pesic, M., Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). doi: 10.1007/11837862_18 CrossRefGoogle Scholar
  4. 4.
    Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: CollaborateCom (2014)Google Scholar
  5. 5.
    Aalst, W.M.P.: Business process simulation revisited. In: Barjis, J. (ed.) EOMAS 2010. LNBIP, vol. 63, pp. 1–14. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15723-3_1 CrossRefGoogle Scholar
  6. 6.
    Stewart, R.: Simulation: The Practice of Model Development and Use. Wiley, New York (2004)Google Scholar
  7. 7.
    van der Aalst, W.: Conformance and Enhancement of Business Processes, vol. 2. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  8. 8.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. TMIS 5(4), 24 (2015)CrossRefGoogle Scholar
  9. 9.
    Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational perspective in agile business processes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 37–52. Springer, Cham (2015). doi: 10.1007/978-3-319-19237-6_3 CrossRefGoogle Scholar
  10. 10.
    Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation generation by-example. In: HICSS, pp. 285–294 (2007)Google Scholar
  11. 11.
    Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04425-0_58 CrossRefGoogle Scholar
  12. 12.
    Ackermann, L., Schönig, S., Jablonski, S.: Towards simulation- and mining-based translation of process models. In: Pergl, R., Molhanec, M., Babkin, E., Fosso Wamba, S. (eds.) EOMAS 2016. LNBIP, vol. 272, pp. 3–21. Springer, Cham (2016). doi: 10.1007/978-3-319-49454-8_1 CrossRefGoogle Scholar
  13. 13.
    Ackermann, L., Schönig, S., Jablonski, S.: Simulation of multi-perspective declarative process models. In: Dumas, M., Fantinato, M. (eds.) BPM 2016 Workshops. LNBIP, vol. 281, pp. 59–71. Springer, Cham (2016)Google Scholar
  14. 14.
    Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT press, Cambridge (2012)Google Scholar
  15. 15.
    Aalst, W.M.P.: Handbook on Business Process Management: Introduction, Methods, and Information Systems. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: CIDM, pp. 310–317 (2011)Google Scholar
  17. 17.
    Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of roles. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 103–110. IEEE (2013)Google Scholar
  18. 18.
    Bimp - the business process simulator. Accessed 17 Mar 2016
  19. 19.
    Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F., Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-17722-4_5 CrossRefGoogle Scholar
  20. 20.
    Recker, J.C., Mendling, J.: On the translation between bpmn and bpel: Conceptual mismatch between process modeling languages. In: CAISE Workshops, pp. 521–532 (2006)Google Scholar
  21. 21.
    Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M.E., Groote, J.F., Somers, L.J.: Transformation of BPMN models for behaviour analysis. In: MSVVEIS, pp. 126–137 (2007)Google Scholar
  22. 22.
    Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative models. In: SIMPDA, pp. 162–173 (2014)Google Scholar
  23. 23.
    Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs through the simulation of declare models. In: Barjis, J., Pergl, R., Babkin, E. (eds.) EOMAS 2015. LNBIP, vol. 231, pp. 20–36. Springer, Cham (2015). doi: 10.1007/978-3-319-24626-0_2 CrossRefGoogle Scholar
  24. 24.
    Johannsen, F., Leist, S., Tausch, R.: Wand and Weber’s good decomposition conditions for BPMN: an interpretation and differences to event-driven process chains. Bus. Process Manage. J. 20(5), 693–729 (2014)CrossRefGoogle Scholar
  25. 25.
    Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling. Softw. IEEE 11(2), 42–49 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lars Ackermann
    • 1
  • Stefan Schönig
    • 1
  • Stefan Jablonski
    • 1
  1. 1.University of BayreuthBayreuthGermany

Personalised recommendations