smartAPI: Towards a More Intelligent Network of Web APIs

  • Amrapali Zaveri
  • Shima Dastgheib
  • Chunlei Wu
  • Trish Whetzel
  • Ruben Verborgh
  • Paul Avillach
  • Gabor Korodi
  • Raymond Terryn
  • Kathleen Jagodnik
  • Pedro Assis
  • Michel Dumontier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10250)

Abstract

Data science increasingly employs cloud-based Web application programming interfaces (APIs). However, automatically discovering and connecting suitable APIs for a given application is difficult due to the lack of explicit knowledge about the structure and datatypes of Web API inputs and outputs. To address this challenge, we conducted a survey to identify the metadata elements that are crucial to the description of Web APIs and subsequently developed the smartAPI metadata specification and associated tools to capture their domain-related and structural characteristics using the FAIR (Findable, Accessible, Interoperable, Reusable) principles. This paper presents the results of the survey, provides an overview of the smartAPI specification and a reference implementation, and discusses use cases of smartAPI. We show that annotating APIs with smartAPI metadata is straightforward through an extension of the existing Swagger editor. By facilitating the creation of such metadata, we increase the automated interoperability of Web APIs. This work is done as part of the NIH Commons Big Data to Knowledge (BD2K) API Interoperability Working Group.

Keywords

Web API Web API description Web services Linked data FAIR principles 

References

  1. 1.
    Alarcón, R., Wilde, E.: RESTler: Crawling RESTful services. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1051–1052. ACM (2010)Google Scholar
  2. 2.
    Auer, S., Heath, T., Bizer, C., Berners-Lee, T.: LDOW 2016: 9th workshop on linked data on the web. In: Proceedings of the 25th International Conference Companion on World Wide Web, WWW 2016 Companion, International World Wide Web Conferences, pp. 1039–1040 (2016)Google Scholar
  3. 3.
    Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., Wolstencroft, K., Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.A.: BioCatalogue: A universal catalogue of web services for the life sciences. Nucleic Acids Res. 38, W689–W694 (2010)Google Scholar
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts (2009)Google Scholar
  5. 5.
    Chinnici, R., Moreau, J., Ryman, A., Weerawarana, S.: Web Services Description Language (WSDL) Version 2.0. Part 1: Core Language. W3C Recommendation (2007). http://xml.coverpages.org/wsdl20000929.html
  6. 6.
    Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Language (WSDL) 1.0. W3C Recommendation (2000). http://xml.coverpages.org/wsdl20000929.html
  7. 7.
    Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Language (WSDL). W3C Note, March 2001. http://www.w3.org/TR/wsdl
  8. 8.
    Gomadam, K., Ranabahu, A., Sheth, A.: SA-REST: Semantic Annotation of Web Resources. W3C Member Submission, April 2010. http://www.w3.org/Submission/SA-REST/
  9. 9.
    Hsu, S.K., Lin, S.J.: MACs: Mining API code snippets for code reuse. Expert Syst. Appl. 38(6), 7291–7301 (2011)CrossRefGoogle Scholar
  10. 10.
    Ishag, M.I.M., Park, H.W., Li, D., Ryu, K.H.: Highlighting current issues in API usage mining to enhance software reusability. In: Proceedings of the 15th International Conference on Software Engineering, Parallel and Distributed Systems (SEPADS 2016). Recent Advances in Computer Engineering Series (2016)Google Scholar
  11. 11.
    Ison, J., Rapacki, K., Ménager, H., et al.: Tools and data services registry: A community effort to document bioinformatics resources. Nucleic Acids Res. 44(1), D38–D47 (2015)Google Scholar
  12. 12.
    Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML microformat for describing RESTful Web services. In: Proceedings of the International Conference on Web Intelligence and Intelligent Agent Technology, pp. 619–625. IEEE Computer Society (2008)Google Scholar
  13. 13.
    Kopecký, J., Vitvar, T.: MicroWSMO. WSMO Working Draft, February 2008. http://www.wsmo.org/TR/d38/v0.1/
  14. 14.
    Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Semantic annotations for WSDL and XML schema. IEEE Internet Comput. 11, 60–67 (2007)CrossRefGoogle Scholar
  15. 15.
    Lanthaler, M., Gütl, C.: Hydra: A vocabulary for hypermedia-driven Web APIs. In: Proceedings of the 6th Workshop on Linked Data on the Web, May 2013. http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf
  16. 16.
    Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WSMO). W3C Member Submission, June 2005. http://www.w3.org/Submission/WSMO/
  17. 17.
    Maleshkova, M., Kopecký, J., Pedrinaci, C.: Adapting SAWSDL for semantic annotations of RESTful services. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009. LNCS, vol. 5872, pp. 917–926. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05290-3_110 CrossRefGoogle Scholar
  18. 18.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O.: OWL-S: Semantic Markup for Web Services. W3C Member Submission, November 2004. http://www.w3.org/Submission/OWL-S/
  19. 19.
    Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet Comput. 8(6), 51–59 (2004)CrossRefGoogle Scholar
  20. 20.
    Pedrinaci, C., Domingue, J.: Toward the next wave of services Linked services for the web of data. J-JUCS 16, 1694–1719 (2010)Google Scholar
  21. 21.
    Scaffidi, C.: Why are APIs difficult to learn and use? Crossroads 12(4), 4–4 (2006)CrossRefGoogle Scholar
  22. 22.
    Torres, R., Tapia, B., Astudillo, H.: Improving web API discovery by leveraging social information. In: 2011 IEEE International Conference on Web Services, pp. 744–745 (2011)Google Scholar
  23. 23.
    Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T., Gabarró Vallés, J.: The pragmatic proof: Hypermedia API composition and execution. Theory Pract. Logic Program. (2016). http://arxiv.org/pdf/1512.07780v1.pdf
  24. 24.
    Verborgh, R., Dumontier, M.: A web API ecosystem through feature-based reuse (2016). CoRR abs/1609.07108, http://arxiv.org/abs/1609.07108
  25. 25.
    Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller, S., Steiner, T., Taheriyan, M., Van de Walle, R.: Survey of semantic description of REST APIs. In: Pautasso, C., Wilde, E., Alarcón, R. (eds.) REST: Advanced Research Topics and Practical Applications, pp. 69–89. Springer, New York (2014). http://link.springer.com/chapter/10.1007/978-1-4614-9299-3_5 CrossRefGoogle Scholar
  26. 26.
    Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al.: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2 (2016). http://www.nature.com/articles/sdata201618
  27. 27.
    Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The semantic automated discovery and integration (SADI) web service design-pattern, API and reference implementation. J. Biomed. Semant. 2(1), 5–23 (2011)CrossRefGoogle Scholar
  28. 28.
    Xin, J., Mark, A., Afrasiabi, C., Tsueng, G., Juchler, M., Gopal, N., Stupp, G.S., Putman, T.E., Ainscough, B.J., Griffith, O.L., Torkamani, A., Whetzel, P.L., Mungall, C.J., Mooney, S.D., Su, A.I., Wu, C.: High-performance web services for querying gene and variant annotation. Genome Biol. 17(1), 91 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amrapali Zaveri
    • 1
    • 2
  • Shima Dastgheib
    • 1
  • Chunlei Wu
    • 3
  • Trish Whetzel
    • 4
  • Ruben Verborgh
    • 5
  • Paul Avillach
    • 6
  • Gabor Korodi
    • 6
  • Raymond Terryn
    • 7
  • Kathleen Jagodnik
    • 8
    • 9
    • 10
  • Pedro Assis
    • 11
  • Michel Dumontier
    • 1
    • 2
  1. 1.Stanford Center for Biomedical Informatics ResearchStanford UniversityStanfordUSA
  2. 2.Institute of Data ScienceMaastricht UniversityMaastrichtThe Netherlands
  3. 3.The Scripps Research InstituteSan DiegoUSA
  4. 4.T2 LabsSunnyvaleUSA
  5. 5.Imec – IDLabGhent UniversityGentBelgium
  6. 6.Harvard Medical SchoolBostonUSA
  7. 7.University of Miami, Miller School of MedicineMiamiUSA
  8. 8.Icahn School of Medicine at Mount SinaiNew YorkUSA
  9. 9.NASA Glenn Research CenterClevelandUSA
  10. 10.Baylor College of MedicineHoustonUSA
  11. 11.Department of GeneticsStanford UniversityStanfordUSA

Personalised recommendations