ArmaTweet: Detecting Events by Semantic Tweet Analysis

  • Alberto Tonon
  • Philippe Cudré-Mauroux
  • Albert Blarer
  • Vincent Lenders
  • Boris Motik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10250)

Abstract

Armasuisse Science and Technology, the R&D agency for the Swiss Armed Forces, is developing a Social Media Analysis (SMA) system to help detect events such as natural disasters and terrorist activity by analysing Twitter posts. The system currently supports only keyword search, which cannot identify complex events such as ‘politician dying’ or ‘militia terror act’ since the keywords that correctly identify such events are typically unknown. In this paper we present ArmaTweet, an extension of SMA developed in a collaboration between armasuisse and the Universities of Fribourg and Oxford that supports semantic event detection. Our system extracts a structured representation from the tweets’ text using NLP technology, which it then integrates with DBpedia and WordNet in an RDF knowledge graph. Security analysts can thus describe the events of interest precisely and declaratively using SPARQL queries over the graph. Our experiments show that ArmaTweet can detect many complex events that cannot be detected by keywords alone.

References

  1. 1.
    Angeli, G., Premkumar, M., Manning, C.: Leveraging linguistic structure for open domain information extraction. In: ACL, pp. 344–354 (2015)Google Scholar
  2. 2.
    Becker, H., Chen, F., Iter, D., Naaman, M., Gravano, L.: Automatic identification and presentation of twitter content for planned events. In: ICWSM, pp. 655–656 (2011)Google Scholar
  3. 3.
    Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on Twitter. In: ICWSM, pp. 438–441 (2011)Google Scholar
  4. 4.
    Benson, E., Haghighi, A., Barzilay, R.: Event discovery in social media feeds. In: HLTCon 2011, pp. 389–398 (2011)Google Scholar
  5. 5.
    Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M.A., Maynard, D., Aswani, N.: TwitIE: an open-source information extraction pipeline for microblog text. In: RANLP, pp. 83–90 (2013)Google Scholar
  6. 6.
    Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in multilingual entity extraction. In: I-SEMANTICS, pp. 121–124 (2013)Google Scholar
  7. 7.
    Farzindar, A., Khreich, W.: A survey of techniques for event detection in Twitter. Comput. Intell. 31(1), 132–164 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gu, H., Xie, X., Lv, Q., Ruan, Y., Shang, L.: ETree: effective and efficient event modeling for real-time online social media networks. In: WI, pp. 300–307 (2011)Google Scholar
  9. 9.
    Kong, L., Schneider, N., Swayamdipta, S., Bhatia, A., Dyer, C., Smith, N.: A dependency parser for tweets. In: EMNLP, pp. 1001–1012 (2014)Google Scholar
  10. 10.
    Lee, R., Sumiya, K.: Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. In: LBSN, pp. 1–10 (2010)Google Scholar
  11. 11.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P., Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., Bizer, C.: DBpedia–a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  12. 12.
    Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: TEDAS: a Twitter-based event detection and analysis system. In: ICDE, pp. 1273–1276 (2012)Google Scholar
  13. 13.
    Long, R., Wang, H., Chen, Y., Jin, O., Yu, Y.: Towards effective event detection, tracking and summarization on microblog data. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 652–663. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23535-1_55 CrossRefGoogle Scholar
  14. 14.
    Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: ACL, pp. 55–60 (2014)Google Scholar
  15. 15.
    Massoudi, K., Tsagkias, M., Rijke, M., Weerkamp, W.: Incorporating query expansion and quality indicators in searching microblog posts. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 362–367. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20161-5_36 CrossRefGoogle Scholar
  16. 16.
    Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  17. 17.
    Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.: Improved part-of-speech tagging for online conversational text with word clusters. In: HLTCon, pp. 380–390 (2013)Google Scholar
  18. 18.
    Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to Twitter. In: HLTCon, pp. 181–189 (2010)Google Scholar
  19. 19.
    Phuvipadawat, S., Murata, T.: Breaking news detection and tracking in Twitter. In: WI-IAT, pp. 120–123 (2010)Google Scholar
  20. 20.
    Popescu, A.M., Pennacchiotti, M.: Detecting controversial events from Twitter. In: CIKM, pp. 1873–1876 (2010)Google Scholar
  21. 21.
    Ramakrishnan, N., Butler, P., Muthiah, S., Self, N., Khandpur, R., Saraf, P., Mares, D., et al.: ‘Beating the news’ with EMBERS: forecasting civil unrest using open source indicators. In: KDD, pp. 1799–1808 (2014)Google Scholar
  22. 22.
    Ritter, A., Clark, S., Mausam, Etzioni, O.: Named entity recognition in tweets: an experimental study. In: EMNLP, pp. 1524–1534 (2011)Google Scholar
  23. 23.
    Ritter, A., Mausam, Etzioni, O., Clark, S.: Open domain event extraction from Twitter. In: KDD, pp. 1104–1112 (2012)Google Scholar
  24. 24.
    Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa, A., Ploeger, T., Bogaard, T.: Building event-centric knowledge graphs from news. J. Web Semant. 37, 132–151 (2016)CrossRefGoogle Scholar
  25. 25.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: WWW, pp. 851–860 (2010)Google Scholar
  26. 26.
    Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M., Sperling, J.: TwitterStand: news in Tweets. In: ACM-GIS, pp. 42–51 (2009)Google Scholar
  27. 27.
    Signorini, A., Segre, A., Polgreen, P.: The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS ONE 6(5), 1–10 (2011)CrossRefGoogle Scholar
  28. 28.
    Vallis, O., Hochenbaum, J., Kejariwal, A.: A novel technique for long-term anomaly detection in the cloud. In: HotCloud, pp. 1–6 (2014)Google Scholar
  29. 29.
    Weng, J., Lee, B.S.: Event detection in Twitter. In: ICWSM, pp. 401–408 (2011)Google Scholar
  30. 30.
    Zhao, L., Chen, F., Dai, J., Hua, T., Lu, C.T., Ramakrishnan, N.: Unsupervised spatial event detection in targeted domains with applications to civil unrest modeling. PLoS ONE 9(10), 1–12 (2014)Google Scholar
  31. 31.
    Zhou, X., Chen, L.: Event detection over twitter social media streams. VLDB J. 23(3), 381–400 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alberto Tonon
    • 1
  • Philippe Cudré-Mauroux
    • 1
  • Albert Blarer
    • 2
  • Vincent Lenders
    • 2
  • Boris Motik
    • 3
  1. 1.eXascale InfolabUniversity of FribourgFribourgSwitzerland
  2. 2.Science & Technology, C4IarmasuisseThunSwitzerland
  3. 3.University of OxfordOxfordUK

Personalised recommendations