Advertisement

ZVI Addition in Continuous Anaerobic Digestion Systems Dramatically Decreases P Recovery Potential: Dynamic Modelling

  • D. Puyol
  • X. Flores-Alsina
  • Y. Segura
  • R. Molina
  • S. Jerez
  • K. V. Gernaey
  • J. A. Melero
  • F. Martinez
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 4)

Abstract

The objective of this study is to show the preliminary results of a (dynamic) mathematical model describing the effects of zero valent iron (ZVI) addition during the anaerobic digestion of waste activated sludge from wastewater treatment systems. A modified version of the Anaerobic Digestion Model No. 1 (ADM1) upgraded with an improved physico-chemical description, ZVI corrosion, propionate uptake enhancement and multiple mineral precipitation is used as a modelling platform. The proposed approach is tested against two case studies which correspond to two lab scale anaerobic digesters (AD2, AD1), with and without adding ZVI, respectively, and running in parallel for a period of 87 days. Experimental results show that ZVI enhances methane production. However, the P recovery potential is dramatically reduced as soluble P decreased by one order of magnitude in AD2 with respect to AD1. Simulations demonstrate that the model is capable to satisfactorily reproduce the dynamics of hydrolysis, acetogenesis, acidogenesis, nutrient release, pH and methanogenesis in the control anaerobic digester (AD1). This study also evidences the enhancement of methane production by the influence of ZVI on the acidogenesis and methanogenesis processes in AD2. In addition, it also identifies saturation conditions for siderite (FeCO3) and vivianite (Fe3(PO4)2), which causes changes in the biogas composition (% CH4 versus % CO2) and P release (lower values). This is the first study analysing the decrease of P recovery potential due to the addition of ZVI into AD systems.

Keywords

ADM1 Multiple mineral precipitation Activated sludge Zero valent iron P recovery potential 

Notes

Acknowledgements

The authors are grateful for financial support of the Spanish Ministry of Economy and Competitiveness through the WATER4FOOD project (CTQ2014-54563-C3-1), the Regional Government of Madrid through the REMTAVARES project S2013/MAE-2716 and the European Social Fund.

References

  1. An J-S, Back Y-J, Kim K-C, Cha R, Jeong T-J (2014) Optimization for the removal of orthophosphate from aqueous solution by chemical precipitation using ferrous chloride. Environ Technol 35:1668–1675CrossRefGoogle Scholar
  2. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WT, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73Google Scholar
  3. Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32(9):1634–1650CrossRefGoogle Scholar
  4. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19(2):292–305CrossRefGoogle Scholar
  5. Feng Y, Zhang Y, Quan X, Chen S (2014) Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res 52:242–250CrossRefGoogle Scholar
  6. Flores-Alsina X, Solon K, Kazadi Mbamba C, Tait S, Gernaey KV, Jeppsson U, Batstone DJ (2016) Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Res 95:370–382CrossRefGoogle Scholar
  7. Heiberg L, Koch CB, Kjaergaard C, Jensen HS, Hans Christian BH (2012) Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils. J Environ Qual 41:938–949CrossRefGoogle Scholar
  8. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484CrossRefGoogle Scholar
  9. Kazadi Mbamba C, Tait S, Flores-Alsina X, Batstone DJ (2015) A systematic study of multiple minerals precipitation modelling in wastewater treatment. Water Res 85:359–370CrossRefGoogle Scholar
  10. Latif MA, Mehta CM, Batstone DJ (2015) Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res 81:288–293CrossRefGoogle Scholar
  11. Latif MA, Mehta CM, Batstone DJ (2017) Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res. 113:42–49CrossRefGoogle Scholar
  12. Liu Y, Zhang Y, Quan X, Chen S, Zhao H (2011) Applying an electric field in a built-in zero valent iron—anaerobic reactor for enhancement of sludge granulation. Water Res 45:1258–1266CrossRefGoogle Scholar
  13. Liu Y, Zhang Y, Quan X, Li Y, Zhao Z, Meng X, Chen S (2012) Optimization of anaerobic acidogenesis by adding FeO powder to enhance anaerobic wastewater treatment. Chem Eng J 192:179–185CrossRefGoogle Scholar
  14. Liu Y, Zhang Y, Ni BJ (2015) Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Res 75:292–300CrossRefGoogle Scholar
  15. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust Energ Rev 36:412–427CrossRefGoogle Scholar
  16. Noeps I, Batstone D, Copp J, Jeppsson U, Volcke E, Alex J, Vanrolleghem PA (2009) An ASM/ADM model interface for dynamic plant-wide simulation. Water Res 43(7):1913–1923CrossRefGoogle Scholar
  17. Rothe M, Frederichs T, Eder M, Kleeberg A, Hupfe M (2014) Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach. Biogeosciences 11:5169–5180CrossRefGoogle Scholar
  18. Segura Y, Puyol D, Ballesteros L, Martínez F, Melero JA (2016) Wastewater sludges pretreated by different oxidation systems at mild conditions to promote the biogas formation in anaerobic processes. Eviron Sci Pollut R 23:24393–24401CrossRefGoogle Scholar
  19. Segura Y, Martinez F, Melero JA, Fierro JLG (2015) Zero valent iron mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. Chem Eng J 269:298–305CrossRefGoogle Scholar
  20. Xiao X, Sheng GP, Mu Y, Yu HQ (2013) A modeling approach to describe ZVI-based anaerobic system. Water Res 47(16):6007–6013CrossRefGoogle Scholar
  21. Zhen G, Lu X, Li YY, Liu Y, Zhao Y (2015) Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chem Eng J 263:461–470CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • D. Puyol
    • 1
  • X. Flores-Alsina
    • 2
  • Y. Segura
    • 1
  • R. Molina
    • 1
  • S. Jerez
    • 1
  • K. V. Gernaey
    • 2
  • J. A. Melero
    • 1
  • F. Martinez
    • 1
  1. 1.Universidad Rey Juan CarlosMadridSpain
  2. 2.Technical University of DenmarkKongens LyngbyDenmark

Personalised recommendations