Adjusting Parameters of the Classifiers in Multiclass Classification

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 716)


The article presents the results of the optimization process of classification for five selected data sets. These data sets contain the data for the realization of the multiclass classification. The article presents the results of initial classification, carried out by dozens of classifiers, as well as the results after the process of adjusting parameters, this time obtained for a set of selected classifiers. At the end of article, a summary and the possibility of further work are provided.


Classification Multiclass Kappa Weka UCI PEMS GCM SMARTPHONE URBAN DIGITS 



This work was partly supported by BKM16/RAU2/507 and BK-219/RAU2/2016 grants from the Institute of Informatics, Silesian University of Technology, Poland.


  1. 1.
    GCM - Global Cancer Map dataset.
  2. 2.
    UCI Machine Learning Repository.
  3. 3.
  4. 4.
    Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)CrossRefGoogle Scholar
  5. 5.
    Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)MATHGoogle Scholar
  6. 6.
    Aly, M.: Survey on multiclass classification methods, Technical report, Caltech (2005)Google Scholar
  7. 7.
    Arie, B.D.: Comparison of classification accuracy using cohen’s weighted kappa. Expert Syst. Appl. 34(2), 825–832 (2008)CrossRefGoogle Scholar
  8. 8.
    Bach, M., Werner, A., Zywiec, J., Pluskiewicz, W.: The study of under- and over-sampling methods’ utility in analysis of highly imbalanced data on osteoporosis. Inf. Sci. Life Sci. Data Anal. 381, 174–190 (2016)Google Scholar
  9. 9.
    Costa, E., Lorena, A., Carvalho, A., Freitas, A.: A review of performance evaluation measures for hierarchical classifiers. In: Evaluation Methods for Machine Learning II, AAAI 2007 Workshop, pp. 182–196. AAAI Press (2007)Google Scholar
  10. 10.
    Cuturi, M.: Fast global alignment kernels. In: Proceedings of the International Conference on Machine Learning (2011)Google Scholar
  11. 11.
    Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATHGoogle Scholar
  12. 12.
    Freeman, E., Moisen, G.: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 217(1–2), 48–58 (2008)CrossRefGoogle Scholar
  13. 13.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Stanford University, Stanford (1998)MATHGoogle Scholar
  14. 14.
    Garris, M., Blue, J., Candela, G., Dimmick, D., Geist, J., Grother, P., Janet, S., Wilson, C.: NIST form-based handprint recognition system. NISTIR 5469 (1994)Google Scholar
  15. 15.
    Haiyang, Z.: A short introduction to data mining and its applications (2011)Google Scholar
  16. 16.
    Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106 (2001)Google Scholar
  17. 17.
    John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345, San Mateo (1995)Google Scholar
  18. 18.
    Johnson, B.: High resolution urban land cover classification using a competitive multi-scale object-based approach. Remote Sens. Lett. 4(2), 131–140 (2013)CrossRefGoogle Scholar
  19. 19.
    Johnson, B., Xie, Z.: Classifying a high resolution image of an urban area using super-object information. ISPRS J. Photogrammetry Remote Sens. 83, 40–49 (2013)CrossRefGoogle Scholar
  20. 20.
    Josinski, H., Kostrzewa, D., Michalczuk, A., Switonski, A.: The exIWO metaheuristic for solving continuous and discrete optimization problems. Sci. World J. 2014 (2014). 14 p. doi: 10.1155/2014/831691. Article ID 831691
  21. 21.
    Świtoński, A., Polański, A., Wojciechowski, K.: Human identification based on gait paths. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 531–542. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23687-7_48 CrossRefGoogle Scholar
  22. 22.
    Kasprowski, P., Harezlak, K.: Using dissimilarity matrix for eye movement biometrics with a jumping point experiment. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016. SIST, vol. 57, pp. 83–93. Springer, Cham (2016). doi: 10.1007/978-3-319-39627-9_8 CrossRefGoogle Scholar
  23. 23.
    Kostrzewa, D., Josinski, H.: The exIWO metaheuristic - a recapitulation of the research on the join ordering problem. Commun. Comput. Inf. Sci. 424, 10–19 (2014)Google Scholar
  24. 24.
    Lessmanna, S., Baesens, B., Seowd, H.V., Thomasc, L.: Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Eur. J. Oper. Res. 247(1), 124–136 (2015)CrossRefGoogle Scholar
  25. 25.
    Mehra, N., Gupta, S.: Survey on multiclass classification methods. Int. J. Comput. Sci. Inf. Technol. 4(4), 572–576 (2013)Google Scholar
  26. 26.
    Mehrabian, A., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006)CrossRefGoogle Scholar
  27. 27.
    Pahlavani, P., Delavar, M., Frank, A.: Using a modified invasive weed optimization algorithm for a personalized urban multi-criteria path optimization problem. Int. J. Appl. Earth Obs. Geoinf. 18, 313–328 (2012)CrossRefGoogle Scholar
  28. 28.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning (1998)Google Scholar
  29. 29.
    Powers, D.: Evaluation: from precision, recall and f-score to roc, informedness, markedness & correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)Google Scholar
  30. 30.
    Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing classifiers. In: Proceedings of the ICML 1998, pp. 445–453. Morgan Kaufmann, San Francisco (1998)Google Scholar
  31. 31.
    Ramaswamy, S., Tamayo, P., Rifkin, R.S.M., Yeang, C.H., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E., Golub, T.: Multiclass cancer diagnosis using tumor gene expression signatures. PNAS 98(26), 15149–15154 (2001)CrossRefGoogle Scholar
  32. 32.
    Reyes-Ortiz, J.L., Oneto, L., Sama, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171, 754–767 (2016)CrossRefGoogle Scholar
  33. 33.
    Smith, M., Martinez, T.: Improving classification accuracy by identifying and removing instances that should be misclassified. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 2690–2697 (2011)Google Scholar
  34. 34.
    Sumner, M., Frank, E., Hall, M.: Speeding up logistic model tree induction. In: 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 675–683 (2005)Google Scholar
  35. 35.
    Unler, A., Murat, A.: A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J. Oper. Res. 206(3), 528–539 (2010)MATHCrossRefGoogle Scholar
  36. 36.
    Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.H., Steinbach, M., Hand, D., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations