Tensor-Based Modeling of Temporal Features for Big Data CTR Estimation

  • Andrzej Szwabe
  • Pawel Misiorek
  • Michal Ciesielczyk
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 716)

Abstract

In this paper we propose a simple tensor-based approach to temporal features modeling that is applicable as means for logistic regression (LR) enhancement. We evaluate experimentally the performance of an LR system based on the proposed model in the Click-Through Rate (CTR) estimation scenario involving processing of very large multi-attribute data streams. We compare our approach to the existing approaches to temporal features modeling from the perspective of the Real-Time Bidding (RTB) CTR estimation scenario. On the basis of an extensive experimental evaluation, we demonstrate that the proposed approach enables achieving an improvement of the quality of CTR estimation. We show this improvement in a Big Data application scenario of the Web user feedback prediction realized within an RTB Demand-Side Platform.

Keywords

Big data Multidimensional data modeling Context-aware recommendation Data extraction Data mining Logistic regression Click-through rate estimation WWW Real-Time Bidding 

References

  1. 1.
    Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn, pp. 421–436. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bro, R., Smilde, A.K.: Centering and scaling in component analysis. J. Chemometr. 17(1), 16–33 (2003)CrossRefGoogle Scholar
  3. 3.
    Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web: Methods and Strategies of Web Personalization. Springer, Berlin (2007)Google Scholar
  4. 4.
    Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction for display advertising. ACM Trans. Intell. Syst. Technol. 5(4), 61:1–61:34 (2014)CrossRefGoogle Scholar
  5. 5.
    Cichocki, A.: Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions. CoRR abs/1403.2048 (2014)Google Scholar
  6. 6.
    Ciesielczyk, M., Szwabe, A., Morzy, M., Misiorek, P.: Progressive random indexing: dimensionality reduction preserving local network dependencies. ACM Trans. Internet Technol. 17(2), 20:1–20:21 (2017). http://doi.acm.org/10.1145/2996185 CrossRefGoogle Scholar
  7. 7.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: ranking semantic web data by tensor decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04930-9_14 CrossRefGoogle Scholar
  9. 9.
    He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., Candela, J.Q.: Practical lessons from predicting clicks on ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD 2014, NY, USA, pp. 5:1–5:9. ACM, New York (2014)Google Scholar
  10. 10.
    Japkowicz, N., Stefanowski, J.: Big Data Analysis: New Algorithms for a New Society. Studies in Big Data. Springer International Publishing, Heidelberg (2015)Google Scholar
  11. 11.
    Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 363–372. IEEE Computer Society, Washington, DC (2008)Google Scholar
  12. 12.
    Kruczyk, M., Baltzer, N., Mieczkowski, J., Draminski, M., Koronacki, J., Komorowski, J.: Random reducts: a Monte Carlo rough set-based method for feature selection in large datasets. Fundam. Inform. 127(1–4), 273–288 (2013)Google Scholar
  13. 13.
    Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Nickel, M., Tresp, V.: An analysis of tensor models for learning on structured data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23–27, 2013, Proceedings, Part II, pp. 272–287. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Provost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 51–59 (2013)CrossRefGoogle Scholar
  16. 16.
    Shan, L., Lin, L., Sun, C., Wang, X.: Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization. Electron. Commer. Res. Appl. 16, 30–42 (2016)CrossRefGoogle Scholar
  17. 17.
    Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer US, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Sutskever, I., Tenenbaum, J.B., Salakhutdinov, R.R.: Modelling relational data using Bayesian clustered tensor factorization. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 1821–1828. Curran Associates, Inc. (2009)Google Scholar
  19. 19.
    Szwabe, A., Ciesielczyk, M., Misiorek, P.: Long-tail recommendation based on reflective indexing. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 142–151. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25832-9_15 CrossRefGoogle Scholar
  20. 20.
    Szwabe, A., Misiorek, P., Walkowiak, P.: Tensor-based relational learning for ontology matching. In: Advances in Knowledge-Based and Intelligent Information and Engineering Systems - 16th Annual KES Conference, San Sebastian, Spain, 10–12 September 2012, pp. 509–518 (2012)Google Scholar
  21. 21.
    Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer, Cham (2016). doi:10.1007/978-3-319-30671-1_4 CrossRefGoogle Scholar
  22. 22.
    Zhang, W., Yuan, S., Wang, J.: Optimal real-time bidding for display advertising. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 1077–1086. ACM, New York (2014)Google Scholar
  23. 23.
    Zhang, W., Yuan, S., Wang, J.: Real-time bidding benchmarking with iPinYou dataset. CoRR abs/1407.7, pp. 1–10 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrzej Szwabe
    • 1
  • Pawel Misiorek
    • 1
  • Michal Ciesielczyk
    • 1
  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations