Advertisement

Erosion Surfaces in the Ardenne–Oesling and Their Associated Kaolinic Weathering Mantle

  • Alain Demoulin
  • François Barbier
  • Augustin Dekoninck
  • Michèle Verhaert
  • Gilles Ruffet
  • Christian Dupuis
  • Johan Yans
Chapter
Part of the World Geomorphological Landscapes book series (WGLC)

Abstract

This chapter deals with the long-term geomorphology of the Paleozoic Ardenne–Oesling massif of S Belgium and the landforms that currently attest the very long persistence and high resistance to erosion of landscape elements created as far back in time as the Lower Cretaceous in a region of predominantly continental regime and constant low to moderate elevation since the Permian. We first present recent results regarding the antiquity of kaolinic weathering mantles preserved in four sites on or close to the plateau surfaces characteristic of the Ardennian landscape, showing that they record at least three main weathering phases, namely in the Early Cretaceous (extending in the early Late Cretaceous), the Late Paleocene, and the Early Miocene. Then, having provided a working definition of the erosion surface and listed criteria helping recognize them in the landscape, we focus on the Hautes Fagnes massif, the highest NE part of the Ardenne–Oesling. We describe the geometric and sedimentary evidence that allow one to recognize a succession of four erosion surfaces formed during the Cretaceous and the Cenozoic and reconstruct the morphogenetic evolution of the area that responded to the variable interplay of the marine transgression-regression, climatic, and tectonic controls. Finally, we present the few estimates of long-term denudation rates available for the Ardenne massif, fission track and cosmogenic nuclide studies both suggesting Cenozoic denudation rates in the order of a few 10 m/Myr, and comment on their compatibility with field observations.

Keywords

Long-term geomorphology Kaolinic weathering Saprolite Erosion surface Ardenne Oesling 

Notes

Acknowledgements

Thanks are due to G. Feraud (University of Nice) for Ar–Ar dating.

References

  1. Alexandre J, Thorez J (1995) Au secondaire et au tertiaire, l’Ardenne tropicale. L’altération des roches et les climats anciens. In: Demoulin A (Ed) L’Ardenne. Essai de géographie physique, Dépt de Géographie physique et Quaternaire, University of Liège, pp 53–67Google Scholar
  2. Baeckeroot G (1942) OeslingetGutland. Morphologie du bassin ardennais et luxembourgeois de la Moselle. A. Colin, Paris, p 396Google Scholar
  3. Baele J-M, Quesnel F, Dupuis C (2016) Silcrete in northern France and Belgium: a terrestrial record of surface environments under the influence of pyroclastic ash-falls. 5th International Geologica Belgica Meeting, Mons, 26–29 Jan 2016, p 40 (Abstract Book)Google Scholar
  4. Barbier F, Prognon C, Quesnel F, Dupuis C, Yans J (2010) Dating and weathering characterization of the Morialmé quarry (Entre-Sambre-et-Meuse, Belgium). 4th French congress on stratigraphy, Paris, p 18 (Abstract Book)Google Scholar
  5. Barbier F, Quesnel F, Dupuis C, Yans J (2012). The late paleocene-early eocene interval as a potential period for weathering in Western Europe: the case of the Morialmé section (Belgium). 4th International Geologica Belgica Meeting, Brussels, 11–14 Sept 2012, p 59 (Abstract book)Google Scholar
  6. Baulig H (1926) Le relief de la Haute Belgique. Ann de Géog 35:206–235CrossRefGoogle Scholar
  7. Belanger I, Delaby S, Delcambre B, Ghysel P, Hennebert M, Laloux M, Marion J-M, Mottequin B, Pingot J-L (2012) Redéfinition des unites structurales du front varisque utilisées dans le cadre de la nouvelle Carte géologique de Wallonie (Belgique). Geol Belg 15:169–175Google Scholar
  8. Biagioni C, Capalbo C, Pasero M (2013) Nomenclature tunings in the hollandite supergroup. Eur J Mineral 25:85–90CrossRefGoogle Scholar
  9. Bless MJ, Felder PJ (1989) Note on the Cretaceous of Hockai (Hautes Fagnes, NE Belgium). Ann de la Soc géol de Belg 112(1):47–56Google Scholar
  10. Boulvain F, Belanger I, Delsate D, Dosquet D, Ghysel P, Godefroit P, Laloux M, Roche M, Teerlynck H, Thorez J (2000) New lithostratigraphical, sedimentological, mineralogical and palaeontological data on the Mesozoic of Belgian Lorraine: a progress report. Geol Belg 3:3–33Google Scholar
  11. Bour I (2010) Histoire thermique des massifs ardennais et bohémien. Conséquences sur la dynamique de l’Europe de l’Ouest au Méso-Cénozoïque. PhD thesis, University of Paris-Sud. http://geologie-et-alpes.pagesperso-orange.fr/tfa/texte/somthese.htm, 364 p
  12. Bruyère D, De Putter T, Perruchot A, Dupuis C (2003) Neogenesis of halloysite in cryptokarstic environments (Beez, Belgium): chemical modeling. In: 10th Conference of the European clay groups association, Modena, 22–26 Jun 2003, p 48 (Abstract Book)Google Scholar
  13. Cosan Y (1969) Etude géologique de sondages au Plateau des tailles. Mémoire du Service Géologique de Belgique, p 32Google Scholar
  14. Davis WM (1896) The Seine, the Meuse and the Moselle. Natl Geogr Mag 7(89–202):228–238Google Scholar
  15. Davis WM (1899) The peneplain. American. Geologist 23:207–239Google Scholar
  16. Dejonghe L, Boni M (2004) The “Calamine-type” zinc-lead deposits in Belgium and West Germany: a product of Mesozoic paleoweathering processes. Geol Belg 8:3–14Google Scholar
  17. Demoulin A (1995) Les surfaces d’érosion méso-cénozoïques en Ardenne-Eifel. Bull de la Soc géol de Fr 166:573–585Google Scholar
  18. Demoulin A (2003) Paleosurfaces and residual deposits in Ardenne-Eifel: historical overview and perspectives. Géol Fr 2003(1):17–21Google Scholar
  19. Demoulin A (2006) La néotectonique de l’Ardenne-Eifel et des régions avoisinantes. Mémoires de la Classe des Sciences, Acad R de Belg 25:252 pGoogle Scholar
  20. Demoulin A, Ek C (1995) La naissance de l’Ardenne. Mise en place du massif paléozoïque de l’Ardenne. In: Demoulin A (ed) L’Ardenne. essai de géographie physique, Dépt de Géographie physique et Quaternaire, University of Liège, pp 15–30Google Scholar
  21. Demoulin A, Hallot E, Rixhon G (2009) Amount and controls of the quaternary denudation in the ardennes massif (Western Europe). Earth Surf Proc Land 34:1487–1496CrossRefGoogle Scholar
  22. Demoulin A, Quesnel F, Dupuis C, Gerrienne P, Yans J (2010) Cenomanian sands and clays north of the Vesdre valley: the oldest known Cretaceous deposits in eastern Belgium. Geol Belg 11:241–256Google Scholar
  23. De Putter T, Ruffet G, Yans J, Mees F (2015) The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region. Ore Geol Rev 71:350–362CrossRefGoogle Scholar
  24. Dill HG, Hansen B, Keck E, Weber B (2010) Cryptomelane: a tool to determine the age and the physical–chemical regime of a Plio-Pleistocene weathering zone in a granitic terrain (Hagendorf, SE Germany). Geomorphology 121:370–377CrossRefGoogle Scholar
  25. Dupuis C (1979) Esquisse paléogéographique du Nord et du Nord-Ouest du Bassin de Paris au Paléocéne et à l’Eocène inférieur. Incidences structurales. C.R. Acad Sci Paris 288:1587–1590Google Scholar
  26. Dupuis C, Charlet JM, Dejonghe L, Thorez J (1996) Reconnaissance par carottage des paléoaltérations kaolinisées mésozoïques de la Haute-Ardenne (Belgique). Le sondage de transinne (194E-495): premiers résultats. Ann de la Soc géol de Belg 119:91–109Google Scholar
  27. Dusar M, Lagrou D (2007) Cretaceous flooding of the Brabant Massif and the lithostratigraphic characteristics of its chalk cover in Northern Belgium. Geol Belg 10:27–38Google Scholar
  28. Fairbridge R (1968) Gradation. In: Fairbridge R (ed) Encyclopedia of earth science. Geomorphology, Springer, Berlin, pp 485–486Google Scholar
  29. Fransolet A-M (1979) Occurrences de lithiophorite, nsutite et cryptomélane dans le Massif de Stavelot, Belgique. Ann de la Soc géol de Belg 102:303–312Google Scholar
  30. Glasmacher U, Zentilli M, Grist A (1998) Apatite fission track thermochronology of Paleozoic sandstones and the hill-intrusion, Northern Linksrheinisches Schiefergebirge, Germany. In: van den Haute P, de Corte F (eds) Advances in fission-track geochronology, Solid earth sciences library vol 10, Springer, pp 151–172Google Scholar
  31. Gosselet J (1888) L’Ardenne Mémoire pour servir à l’explication de la carte géologique détaillée de la France. Baudry et cie, Paris, 889 pGoogle Scholar
  32. Gullentops F (1954) Contributions à la chronologie du Pléistocène et des formes du relief en Belgique. Mém de lnst de Géol de Univ de Louvain 18:123–252Google Scholar
  33. Hautmann S, Lippolt HJ (2000) 40Ar/39Ar dating of central European K–Mn oxides—a chronological framework of supergene alteration processes during the neogene. Chem Geol 170:37–80CrossRefGoogle Scholar
  34. Jérôme A (1907) De la découverte d’un gisement notable de kaolin en Ardenne, Bull de la Soc belg de Géol XXI:217–222Google Scholar
  35. Junge H (1987) Der Einfluss von Tektonik und eustatischen Meeresspielgelschwankungen auf die Ausbildung der Reliefgenerationen im Norden der Eifeler Nord-Süd-Zone. Z für Geomorphol Suppl Bd 65:35–84Google Scholar
  36. King LC (1947) Landscape study in southern Africa. Proc Geol Soc S Afr 50:23–102Google Scholar
  37. Klein C (1990) L’évolution géomorphologique de l’Europe hercynienne occidentale et centrale. Aspects régionaux et essai de synthèse. Mémoires et Documents de Géographie CNRS, Paris, 177 pGoogle Scholar
  38. Macar P (1938) Contribution à l’étude géomorphologique de l’Ardenne (note préliminaire). Ann de la Soc Géol de Belg 61:B187–217Google Scholar
  39. Mees F, Stoops G (1999) Palaeoweathering of lower Palaeozoic rocks of the Brabant Massif, Belgium: a mineralogical and petrographical analysis. Geol Mag 34:349–367Google Scholar
  40. Meyer H, Hetzel R, Strauss H (2010) Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany. Int J Earth Sci 99:395–412CrossRefGoogle Scholar
  41. Nahon D (1991) Introduction to the petrology of soils and chemical weathering. Wiley, New York, 313 pGoogle Scholar
  42. Quesnel F (2003) Paleoweathering and paleosurfaces from northern and eastern France to Belgium and Luxembourg: geometry, dating and geodynamic implications. Géol Fr 2003(1):95–104Google Scholar
  43. Quesnel F, Dupuis C, Yans J, Wyns R, Farjanel G, Théveniaut H, Voisin L, Lacquement F, Vergari A, Baele JM, De Putter T, Colbach R, Muller A, Vandycke S, Giot D, Brulhet J (2002) Paléosurfaces et paléoaltérations dans le Nord de la Fr et en Belg. Géologues 133–134:40–43Google Scholar
  44. Schaller M, von Blanckenburg F, Veldkamp A, Tebbens L, Hovius N, Kubik P (2002) A 30,000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth Planet Sci Lett 204:307–320CrossRefGoogle Scholar
  45. Schaller M, von Blanckenburg F, Hovius N, Veldkamp A, Van den Berg M, Kubik P (2004) Paleoerosion rates from cosmogenic 10Be in a 1.3 Ma terrace sequence: response of the River Meuse to changes in climate and rock uplift. J Geol 112:127–144CrossRefGoogle Scholar
  46. Schuler M, Cavelier C, Dupuis C, Steurbaut E, Vandenberghe N, Riveline J, Roche E, Soncini M-J (1992) The Paleogene of the Paris and Belgian Basins. Standard stages and regional stratotypes. Cah Micropaléontol 7:29–92Google Scholar
  47. Sougnez N, Vanacker V, Kubik P (2011) Reconstruction of Quaternary landscape evolution based on 10Be denudation rates and tectonic uplift data in a moderate uplifted region (Ardennes Massif, Belgium). XVIII INQUA-congress, Bern, Poster, p 683Google Scholar
  48. Théveniaut H, Quesnel F, Wyns R, Hugues G (2007) Palaeomagnetic dating of the “Borne de Fer” ferricrete (NE France): lower Cretaceous continental weathering. Palaeogeogr Palaeoclimatol Palaeoecol 253:271–279CrossRefGoogle Scholar
  49. Thiry M, Quesnel F, Yans J, Wyns R, Vergari A, Théveniaut H, Simon-Coinçon R, Ricordel C, Moreau MG, Giot D, Dupuis C, Bruxelles L, Barbarand J, Baele JM (2006) Continental France and Belgium during the Early Cretaceous: paleoweatherings and paleolandforms. Bull de la Soc Géol de Fr 177:155–175CrossRefGoogle Scholar
  50. Thomas M.F (1994) Geomorphology in the tropics. A study of weathering and denudation in low latitudes. Wiley, Chichester, 460 pGoogle Scholar
  51. Vasconcelos PM, Renne PR, Becker TA, Wenk HR (1995) Mechanisms and kinetics of atmospheric, radiogenic, and nucleogenic argon release from cryptomelane during 40Ar/39Ar analysis. Geochim Cosmochim Acta 59:2057–2070CrossRefGoogle Scholar
  52. Voisin L (1981) Analyse géomorphologique d’une région-type: l’Ardenne occidentale. Service de reproduction des thèses, Université Lille 2, 883 pGoogle Scholar
  53. Wayland EJ (1933) Peneplains and some other erosional platforms. Ann Rep Bull, Protectorate Uganda Geol Surv 1:77–79 Department of MinesGoogle Scholar
  54. Wyns R, Gourry JC, Baltassat JM, Lebert F (1999) Caractérisation multiparamètre des horizons de subsurface (0–100 m) en contexte de socle altéré. PANGEA 31(32):51–54Google Scholar
  55. Xu C, Mansy JL, van den Haute P, Guillot F, Zhou Z, Chen J, De Grave J (2009) Late- and post-Variscan evolution of the Ardennes in France and Belgium: constraints from apatite fission-track data. Geol Soc Lond Spl Publ 324:167–179CrossRefGoogle Scholar
  56. Yans J (2003) An overview of the saprolites of Belgium and their potential kaolinitic supplies to Mesozoic and Cenozoic sediments. Géol Fr 2003(1):33–37Google Scholar
  57. Yans J (2013) Gestion durable des ressources minérales wallonnes: pistes de réflexions en vue d’une meilleure intégration de la problématique. Actes du 1er congrès interdisciplinaire du développement durable, Namur, pp 195–206Google Scholar
  58. Yans J, Dupuis C (2005) Timing of saprolitisation in the Haute-Lesse area (Belgium). Geophys Res Abst 7:7064Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alain Demoulin
    • 1
  • François Barbier
    • 5
  • Augustin Dekoninck
    • 2
  • Michèle Verhaert
    • 2
  • Gilles Ruffet
    • 3
  • Christian Dupuis
    • 4
  • Johan Yans
    • 2
  1. 1.Department of Physical Geography and QuaternaryUniversity of LiègeLiègeBelgium
  2. 2.Department of GeologyUniversity of NamurNamurBelgium
  3. 3.Géosciences RennesRennes CedexFrance
  4. 4.Géologie Fondamentale et AppliquéeUniversity of MonsMonsBelgium
  5. 5.Global Operations and Components at Flextronics International LtdSingaporeSingapore

Personalised recommendations