An Introduction to the Geology of Belgium and Luxembourg

  • Frédéric Boulvain
  • Noël Vandenberghe
Part of the World Geomorphological Landscapes book series (WGLC)


Belgium and the Grand-Duchy of Luxembourg show surprising geological diversity over their small combined area of 33,114 km2. Almost all types of sedimentary rocks crop out and are generally preserved along well-described and easily accessible sections or in quarries. Several sections are known worldwide and are visited for stratigraphic or sedimentological purposes. Magmatic rocks are not abundant and metamorphic rocks are restricted to slates. The stratigraphic scale ranges from the Cambrian to the Quaternary, which translates to a half billion years of Earth history. This chapter provides a comprehensive overview of the different stratigraphic units, starting from the oldest and ending with the youngest. Modern stratigraphic schemes highlight formations’ geometries and interrelations. Some of the most remarkable units are further detailed. The two orogenic phases that shaped the Lower Paleozoic inliers and the Devonian-Carboniferous faulted and folded belt, i.e. the Caledonian and Variscan orogeny, are also addressed.


Caledonian inliers Variscan fold-and-thrust belt Brabant massif Ardenne allochthon Mesozoic sedimentation in Belgium and Luxembourg Cenozoic Belgian basin 



F. Boulvain is grateful to all those who shared their remarks and observations when visiting outcrops in Belgium and Luxembourg. Special thanks to J-L. Pingot, A. Herbosch, A. Delmer, M. Hennebert, E. Juvigné, S. Dechamps, J. Thorez, M. Coen-Aubert and J-M. Marion. Robin Weatherl is acknowledged for linguistic help.


  1. André L (1991) The concealed crystalline basement in Belgium and the “Brabantia” microplate concept: constraints from the Caledonian magmatic and sedimentary rocks. Ann Soc Géol Belgique 114:117–139Google Scholar
  2. Baele JM (2003) Identification of post-Variscan supergene evolution in marine cherts and residual silicified deposits from Belgium. Géol France 1:39–42Google Scholar
  3. Belanger I, Delaby S, Delcambre B, Ghysel P, Hennebert M, Laloux M, Marion JM, Mottequin B, Pingot JL (2012) Redéfinition des unités structurales du front varisque utilisées dans le cadre de la nouvelle carte géologique de Wallonie (Belgique). Geol Belg 15:169–175Google Scholar
  4. Bintz J, Storoni A (2009) Les Minerais de Fer Luxembourgeois. Schortgen, Esch-sur-Alzette, p 24Google Scholar
  5. Borremans M (ed) (2015) Geologie van Vlaanderen. Academia Press, 491p. ISBN 978 90 382 2433 6Google Scholar
  6. Boulvain F (2007) Frasnian carbonate mounds from Belgium: sedimentology and palaeoceanography. In: Álvaro JJ, Aretz M, Boulvain F, Munnecke A, Vachard D, Vennin E (eds) Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls. Geol Soc London, Spec Publ 275:125–142Google Scholar
  7. Boulvain F, Belanger I, Delsate D, Dosquet D, Ghysel P, Godefroit P, Laloux M, Roche M, Teerlynck H, Thorez J (2001) New lithostratigraphical, sedimentological, mineralogical and palaeontological data on the Mesozoic of Belgian Lorraine: a progress report. Geol Belg 3:3–33Google Scholar
  8. Boulvain F, Mabille C, Poulain G, Da Silva AC (2009) Towards a palaeogeographical and sequential framework for the Givetian of Belgium. Geol Belg 12:161–178Google Scholar
  9. Boulvain F, Pingot JL (2015) Genèse du sous-sol de la Wallonie. Acad roy Belgique, Bruxelles, p 208Google Scholar
  10. Bultynck P (1989) Bernissart et les iguanodons. Inst roy Sci nat Belgique, 115 pGoogle Scholar
  11. Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc London 159:631–644CrossRefGoogle Scholar
  12. Corteel C, De Paepe P (2003) Boron metasomatism in the Brabant Massif (Belgium): geochemical and petrographical evidence of Devonian tourmalinite pebbles. Geol en Mijnbouw 82:197–208CrossRefGoogle Scholar
  13. Da Silva AC, Boulvain F (2004) From palaeosols to carbonate mounds: facies and environments of the Middle Frasnian platform in Belgium. Geol Q 48:253–266Google Scholar
  14. Debacker TN (2012) Folds and cleavage/fold relationships in the Brabant Massif, southeastern Anglo-Brabant Deformation Belt. Geol Belg 15:81–95Google Scholar
  15. Debacker TN, Dewaele S, Sintubin M, Verniers J, Muchez P, Boven A (2005) Timing and duration of the progressive deformation of the Brabant Massif, Belgium. Geol Belg 8:20–34Google Scholar
  16. De Man E, Ivany L, Vandenberhe N (2004) Stable oxygen isotope record of the Eocene-Oligocene transition in the southern North Sea Basin: positioning the Oi-1 event. Netherlands J Geosci 83(3):193–197CrossRefGoogle Scholar
  17. Demoulin A, Hallot E (2009) Shape and amount of the Quaternary uplift of the western Rhenish shield and the Ardennes (western Europe). Tectonophysics 474:696–708CrossRefGoogle Scholar
  18. De Vos W, Verniers J, Herbosch A, Vanguestaine M (1993) A new geological map of the Brabant Massif, Belgium. Geol Mag 130:605–611CrossRefGoogle Scholar
  19. Dusar M, Langenaeker V, Wouters L (2001) Permian-Triassic-Jurassic lithostratigraphic units in the Campine basin and the Roer Valley Graben (NE Belgium). Geol Belg 4:107–112Google Scholar
  20. Fairon-Demaret M, Steurbaut E, Damblon F, Dupuis C, Smith T, Gerrienne P (2003) The in situ Glyptostroboxylon forest of Hoegaarden (Belgium) at the Initial Eocene Thermal Maximum (55 Ma). Rev Paleobotany Palynol 126:103–129CrossRefGoogle Scholar
  21. Felder WM (1975) Lithostratigrafie van het Boven-Krijt en het Dano-Montien in Zuid-Limburg en het aangrenzende gebied in Zagwijn. Rijks Geol Dienst 63–72Google Scholar
  22. Fielitz W, Mansy JL (1999) Pre- and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides). Tectonophysics 309:227–256CrossRefGoogle Scholar
  23. Fourmarier P (ed) (1954) Prodrome d’une description géologique de la Belgique. Soc géol de Belgique, Liège, p 826Google Scholar
  24. Goemaere E, Dejonghe L (2005) Paleoenvironmental reconstruction of the Mirwart Formation (Pragian) in the Lambert quarry (Flamierge, Ardenne, Belgium). Geologica Belgica 8:37–52Google Scholar
  25. Hance L, Poty E, Devuyst FX (2001) Stratigraphie séquentielle du Dinantien type (Belgique) et corrélation avec le nord de la France (Boulonnais, Avesnois). Bull Soc Géol France 172:411–426CrossRefGoogle Scholar
  26. Havron C, Vandycke S, Quinif Y (2007) Interactivité entre tectonique méso-cénozoïque et dynamique karstique au sein des calcaires dévoniens de la région de Han-sur-Lesse (Ardennes, Belgique). Geol Belg 10:93–108Google Scholar
  27. Herbosch A, Verniers J (2014) Stratigraphy of the Lower Palaeozoic of the Brabant Massif, Belgium. Part II: the Middle Ordovician to lowest Silurian of the Rebecq Group. Geol Belg 16:115–136Google Scholar
  28. Lamens J (1985) Transition from turbidite to shallow-water sedimentation in the Lower Salmian (Tremadocian, Lower Ordovician) of the Stavelot Massif, Belgium. Sedim Geol 44:121–142CrossRefGoogle Scholar
  29. Lees A, Hallet V, Hibo D (1985) Facies variation in Waulsortian buildups. Part I. A model from Belgium. Geol J 20:138–153Google Scholar
  30. Linnemann U, Herbosch A, Liégeois JP, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with the new zircon ages, geochemistry, Sm-Nd isotopes, stratigraphy and palaeogeography. Earth Sci Rev 112:126–154CrossRefGoogle Scholar
  31. Louwye S, Laga P (2008) Dinoflagellate cyst stratigraphy and palaeoenvironment of the marginal marine Middle and Upper Miocene of the eastern Campine area, northern Belgium (southern North Sea Basin). Geol J 43:75–94CrossRefGoogle Scholar
  32. Lucius M (1952) Manuel de la Géologie du Luxembourg, vue d’ensemble sur l’aire de sédimentation luxembourgeoise. Imprimerie de la Cour V. Buck, 406 pGoogle Scholar
  33. Matte P (1986) La chaîne varisque parmi les chaînes paléozoïques péri-atlantiques, modèle d’évolution et position des grands blocs continentaux au Permo-Carbonifère. Bull Soc Géol France 8(II):9–24Google Scholar
  34. Maubeuge PL (1954) Le Trias et le Jurassique du sud-est de la Belgique. In: Fourmarier P (ed) Prodrome d’une description géologique de la Belgique. Soc géol de Belgique, Liège, pp 385–416Google Scholar
  35. Meilliez F (2006) La discordance éodévonienne de l’Ardenne: caractérisation stratigraphique et paléo-environnementale de la Formation de Fépin et ses conséquences. Géol France 1–2:29–33Google Scholar
  36. Meilliez F, Lacquement F (2006) La discordance éodévonienne de l’Ardenne: structure du site de Fépin et conséquences sur les interprétations géodynamiques de l’Ardenne. Géol France 1–2:73–77Google Scholar
  37. Nyhuis C, Rippen D, Denayer J (2014) Facies characterization of organic-rich mudstones from the Chokier Formation (lower Namurian), south Belgium. Geol Belg 127:311–322Google Scholar
  38. Robaszynski F, Dupuis C (1983) Belgique. Guides géologiques régionaux, Masson, Paris, p 204Google Scholar
  39. Schavemaker Y, De Bresser JHP, Van Baelen H, Sintubin M (2012) Geometry and kinematics of the low-grade metamorphic “Herbeumont shear zone” in the High-Ardenne slate belt (Belgium). Geol Belg 15:126–136Google Scholar
  40. Sintubin M, Everaerts M (2002) A compressional wedge model for the Lower Palaeozoic Anglo-Brabant Belt (Belgium) based on potential field data. Geol Soc London, Spec Publ 201:327–343CrossRefGoogle Scholar
  41. Steurbaut E (1998) High-resolution holostratigraphy of Middle Paleocene to Early Eocene strata in Belgium and adjacent areas. Palaeontographica, A 247(5–6):91–156Google Scholar
  42. Steurbaut E (2006) Ypresian. In Dejonghe L (ed) Current status of chronostratigraphic units named from Belgium and adjacent areas. Geologica Belgica 9(1–2):73–93Google Scholar
  43. Thorez J, Dreesen R, Streel M (2006) Famennian. In: Dejonghe L (ed) Current status of chronostratigraphic units named from Belgium and adjacent area. Geol Belg 9:27–45Google Scholar
  44. Vandenberghe N, Van Simaeys S, Steurbaut E, Jagt J, Felder P (2004) Stratigraphic architecture of the Upper Cretaceous and Cenozoic along the southern border of the North Sea Basin in Belgium. Neth J Geosci 83(3):155–171Google Scholar
  45. Vandenberghe N, De Craen M, Wouters L (2014a) The Boom Clay geology. From sedimentation to present-day occurrence. A review. Memoirs Geol Surv Belgium 60:76Google Scholar
  46. Vandenberghe N, Harris W, Wampler M, Houthuys R, Louwye S, Adriaens R, Vos K, Lanckacker T, Matthijs J, Deckers J, Verhaegen J, Laga P, Westerhoff W, Munsterman D (2014b) The implications of K-Ar dating in the Diest Sand Formation on the paleogeography of the Upper Miocene in Belgium. Geol Belg 17(2):161–174Google Scholar
  47. Van den Bril K, Swennen R (2009) Sedimentological control on carbonate cementation in the Luxembourg Sandstone Formation. Geol Belg 12:3–23Google Scholar
  48. Vandycke S (2002) Paleostress records in Cretaceous formations in NW Europe: extensional and strike-slip events in relationships with Cretaceous-Tertiary inversion tectonics. Tectonophysics 357:119–136CrossRefGoogle Scholar
  49. Waterlot G, Beugnies A, Bintz J (1973) Ardenne, Luxembourg. Guides géologiques régionaux, Masson, Paris, p 206Google Scholar
  50. Ziegler PA (1982) Geological atlas of the Western and Central Europe. Shell Int Petrol Maatsch, 130 pGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Pétrologie SédimentaireUniversité de LiègeLiègeBelgium
  2. 2.Department Earth and Environmental Sciences, Division of Geology, LeuvenKU LeuvenLeuven-HeverleeBelgium

Personalised recommendations