Towards Temporal Logic Computation Using DNA Strand Displacement Reactions

  • Matthew R. Lakin
  • Darko Stefanovic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10240)


Time-varying signals are ubiquitous throughout science, and studying the high-level temporal structure of such processes is of significant practical importance. In this context, techniques from computer science such as temporal logic are a powerful tool. Temporal logic allows one to describe temporal properties of time-varying processes, e.g., the order in which particular events occur. In this paper, we show that DNA strand displacement reaction networks can be used to implement computations that check certain temporal relationships within time-varying input signals. A key aspect of this work is the development of DNA circuits that incorporate a primitive memory, so that their behavior is influenced not just by the current observed chemical environment, but also by environments observed in the past. We formalize our circuit designs in the DSD programming language and use simulation results to confirm that they function as intended. This work opens up the possibility of developing DNA circuits capable of long-term monitoring of processes such as cellular function, and points to possible designs of future DNA circuits that can decide more sophisticated temporal logics.


Input Signal Temporal Logic Input Sequence Logic Gate Reaction Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This material is based upon work supported by the National Science Foundation under grants 1525553, 1518861, and 1318833.


  1. 1.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRefGoogle Scholar
  2. 2.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)CrossRefGoogle Scholar
  3. 3.
    Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRefGoogle Scholar
  5. 5.
    Jiang, H., Salehi, S.A., Riedel, M.D., Parhi, K.K.: Discrete-time signal processing with DNA. ACS Synth. Biol. 2(5), 245–254 (2013)CrossRefGoogle Scholar
  6. 6.
    Farzadfard, F., Lu, T.K.: Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346(6211), 1256272 (2014)CrossRefGoogle Scholar
  7. 7.
    Fernando, C.T., Liekens, A.M.K., Bingle, L.E.H., Beck, C., Lenser, T., Stekel, D.J., Rowe, J.E.: Molecular circuits for associative learning in single-celled organisms. J. Royal Soc. Interface 6, 463–469 (2009)CrossRefGoogle Scholar
  8. 8.
    McGregor, S., Vases, V., Husbands, P., Fernando, C.: Evolution of associative learning in chemical networks. PLoS Comput. Biol. 8(11), e1002739 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Design of a biochemical circuit motif for learning linear functions. J. Royal Soc. Interface 11(101), 20140902 (2014)CrossRefGoogle Scholar
  10. 10.
    Banda, P., Teuscher, C., Lakin, M.R.: Online learning in a chemical perceptron. Artif. Life 19(2), 195–219 (2013)CrossRefGoogle Scholar
  11. 11.
    Banda, P., Teuscher, C., Stefanovic, D.: Training an asymmetric signal perceptron through reinforcement in an artificial chemistry. J. Royal Soc. Interface 11, 20131100 (2014)CrossRefGoogle Scholar
  12. 12.
    Lakin, M.R., Stefanovic, D.: Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5(8), 885–897 (2016)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. J. Royal Soc. Interface 9(68), 470–486 (2012)CrossRefGoogle Scholar
  14. 14.
    Goudarzi, A., Lakin, M.R., Stefanovic, D.: DNA reservoir computing: a novel molecular computing approach. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 76–89. Springer, Cham (2013). doi: 10.1007/978-3-319-01928-4_6 CrossRefGoogle Scholar
  15. 15.
    Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable memories. Proc. Natl. Acad. Sci. USA 109(47), E3212–E3220 (2012)CrossRefGoogle Scholar
  16. 16.
    Moles, J., Banda, P., Teuscher, C.: Delay line as a chemical reaction network. Parallel Process. Lett. 21(1), 1540002 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    O’Steen, M.R., Cornett, E.M., Kolpashchikov, D.M.: Nuclease-containing media for resettable operation of DNA logic gates. Chem. Commun. 51, 1429–1431 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)CrossRefGoogle Scholar
  19. 19.
    Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23, 247–271 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)CrossRefGoogle Scholar
  21. 21.
    Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 3(8), 600–616 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRefGoogle Scholar
  23. 23.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. USA 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  24. 24.
    Zhang, D.Y.: Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc. 133, 1077–1086 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  3. 3.Center for Biomedical EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations