An Efficient Algorithm for the Rooted Triplet Distance Between Galled Trees

  • Jesper Jansson
  • Ramesh Rajaby
  • Wing-Kin SungEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10252)


The previously fastest algorithm for computing the rooted triplet distance between two input galled trees (i.e., phylogenetic networks whose cycles are vertex-disjoint) runs in \(O(n^{2.687})\) time, where n is the cardinality of the leaf label set. Here, we present an \(O(n \log n)\)-time solution. Our strategy is to transform the input so that the answer can be obtained by applying an existing \(O(n \log n)\)-time algorithm for the simpler case of two phylogenetic trees a constant number of times.


Phylogenetic network comparison Galled tree Rooted triplet Algorithm Computational complexity 



J.J. was partially funded by The Hakubi Project at Kyoto University and KAKENHI grant number 26330014.


  1. 1.
    Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially resolved trees. Theor. Comput. Sci. 412(48), 6634–6652 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brodal, G.S., Fagerberg, R., Mailund, T., Pedersen, C.N.S., Sand, A.: Efficient algorithms for computing the triplet and quartet distance between trees of arbitrary degree. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 1814–1832. SIAM (2013)Google Scholar
  3. 3.
    Cardona, G., Llabrés, M., Rosselló, R., Valiente, G.: Comparison of galled trees. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(2), 410–427 (2011)CrossRefGoogle Scholar
  4. 4.
    Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)CrossRefGoogle Scholar
  5. 5.
    Dobson, A.J.: Comparing the shapes of trees. In: Street, A.P., Wallis, W.D. (eds.) Combinatorial Mathematics III. LNM, vol. 452, pp. 95–100. Springer, Heidelberg (1975). doi: 10.1007/BFb0069548 CrossRefGoogle Scholar
  6. 6.
    Gambette, P., Huber, K.T.: On encodings of phylogenetic networks of bounded level. J. Math. Biol. 65(1), 157–180 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinf. Comput. Biol. 2(1), 173–213 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts Algorithms and Applications. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees by counting triangles. J. Discrete Algorithms 25, 66–78 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jansson, J., Rajaby, R.: A more practical algorithm for the rooted triplet distance. J. Comput. Biol. 24(2), 106–126 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kuhner, M.K., Felsenstein, J.: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11(3), 459–468 (1994)Google Scholar
  12. 12.
    Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions (2011)Google Scholar
  13. 13.
    Wang, L., Ma, B., Li, M.: Fixed topology alignment with recombination. Discrete Appl. Math. 104(1–3), 281–300 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jesper Jansson
    • 1
    • 2
  • Ramesh Rajaby
    • 3
    • 4
  • Wing-Kin Sung
    • 3
    • 5
    Email author
  1. 1.Laboratory of Mathematical Bioinformatics, ICRKyoto UniversityUji, kyotoJapan
  2. 2.Department of ComputingThe Hong Kong Polytechnic UniversityHong KongChina
  3. 3.School of ComputingNational University of SingaporeSingaporeSingapore
  4. 4.NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
  5. 5.Genome Institute of SingaporeSingaporeSingapore

Personalised recommendations