Advertisement

Ranking Vertices for Active Module Recovery Problem

  • Javlon E. Isomurodov
  • Alexander A. Loboda
  • Alexey A. Sergushichev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10252)

Abstract

Selecting a connected subnetwork enriched in individually important vertices is an approach commonly used in many areas of bioinformatics, including analysis of gene expression data, mutations, metabolomic profiles and others. It can be formulated as a recovery of an active module from which an experimental signal is generated. Commonly, methods for solving this problem result in a single subnetwork that is considered to be a good candidate. However, it is usually useful to consider not one but multiple candidate modules at different significance threshold levels. Therefore, in this paper we suggest to consider a problem of finding a vertex ranking instead of finding a single module. We also propose two algorithms for solving this problem: one that we consider to be optimal but computationally expensive for real-world networks and one that works close to the optimal in practice and is also able to work with big networks.

Keywords

Interaction networks Active module Vertex ranking Dynamic programming Integer linear programming Connected subgraphs 

Notes

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (agreement 2.3300.2017).

References

  1. 1.
    Alcaraz, N., Friedrich, T., Kotzing, T., Krohmer, A., Muller, J., Pauling, J., Baumbach, J.: Efficient key pathway mining: combining networks and OMICS data. Integr. Biol. 4(7), 756–764 (2012)CrossRefGoogle Scholar
  2. 2.
    Beisser, D., Klau, G.W., Dandekar, T., Muller, T., Dittrich, M.T.: BioNet: an R-package for the functional analysis of biological networks. Bioinformatics 26(8), 1129–1130 (2010)CrossRefGoogle Scholar
  3. 3.
    Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008)CrossRefGoogle Scholar
  4. 4.
    El-Kebir, M., Klau, G.W.: Solving the maximum-weight connected subgraph problem to optimality (2014). arXiv:1409.5308
  5. 5.
    Hofree, M., Shen, J.P., Carter, H., Gross, A., Ideker, T.: Network-based stratification of tumor mutations. Nat. Methods 10(11), 1108–1115 (2013)CrossRefGoogle Scholar
  6. 6.
    Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1), S233–S240 (2002)CrossRefGoogle Scholar
  7. 7.
    Jha, A.K., Huang, S.C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Loginicheva, E., Chmielewski, K., Stewart, K.M., Ashall, J., Everts, B., Pearce, E.J., Driggers, E.M., Artyomov, M.N.: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3), 419–430 (2015)CrossRefGoogle Scholar
  8. 8.
    Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1), 559 (2008)CrossRefGoogle Scholar
  9. 9.
    Loboda, A.A., Artyomov, M.N., Sergushichev, A.A.: Solving generalized maximum-weight connected subgraph problem for network enrichment analysis. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 210–221. Springer, Cham (2016). doi: 10.1007/978-3-319-43681-4_17 CrossRefGoogle Scholar
  10. 10.
    Patil, K.R., Nielsen, J.: Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Nat. Acad. Sci. 102(8), 2685–2689 (2005)CrossRefGoogle Scholar
  11. 11.
    Sergushichev, A.A., Loboda, A.A., Jha, A.K., Vincent, E.E., Driggers, E.M., Jones, R.G., Pearce, E.J., Artyomov, M.N.: GAM: a web-service for integrated transcriptional and metabolic network analysis. Nucleic Acids Res. 44(W1), 194–200 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Javlon E. Isomurodov
    • 1
    • 2
  • Alexander A. Loboda
    • 1
    • 2
  • Alexey A. Sergushichev
    • 1
    • 2
  1. 1.Computer Technologies DepartmentITMO UniversitySaint PetersburgRussia
  2. 2.JetBrains ResearchSaint PetersburgRussia

Personalised recommendations