Dynamics of Self-replicating DNA-Tile Patterns
Conference paper
First Online:
Abstract
DNA tiles serve as molecular components for the self-assembly of programmable 2-dimensional patterns at the nanoscale. To produce identical copies of a pre-assembled DNA tile pattern, we use a theoretical framework of non enzymatic cross-coupled self-replication system based on tile self-assembly model. This paper presents a kinetic modelling of the pattern self-replication and analyses the influence of physicochemical parameters of tile self-assembly process over the reliability and replication gain. We demonstrate that the tile assembly errors, introduced in tile patterns during their assembly, set a limit over the size of a tile pattern that can be replicated exponentially and reliably.
Keywords
Self-replication DNA tile DNA self-assembly Tile patternReferences
- 1.Abel, Z., Benbernou, N., Damian, M., Demaine, E.D., Demaine, M.L., Flatland, R.Y., Kominers, S.D., Schweller, R.T.: Shape replication through self-assembly and RNase enzymes. In: SODA, pp. 1045–1064. SIAM (2010)Google Scholar
- 2.Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Symposium on Theory of Computing (STOC), New York, pp. 740–748 (2001)Google Scholar
- 3.Barish, R.D., Rothemund, P.W., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
- 4.Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 5.Fujibayashi, K., Zhang, D.Y., Winfree, E., Murata, S.: Error suppression mechanisms for DNA tile self-assembly and their simulation. Nat. Comput. 8(3), 589–612 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 6.Gautam, V.K., Czeizler, E., Haddow, P.C., Kuiper, M.: Design of a minimal system for self-replication of rectangular patterns of DNA tiles. In: Dediu, A.-H., Lozano, M., Martín-Vide, C. (eds.) TPNC 2014. LNCS, vol. 8890, pp. 119–133. Springer, Cham (2014). doi: 10.1007/978-3-319-13749-0_11 Google Scholar
- 7.Gautam, V.K., Haddow, P.C., Kuiper, M.: Reliable self-assembly by self-triggered activation of enveloped DNA tiles. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 68–79. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45008-2_6 CrossRefGoogle Scholar
- 8.Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005). doi: 10.1007/11493785_6 CrossRefGoogle Scholar
- 9.Keenan, A., Schweller, R.T., Zhong, X.: Exponential replication of patterns in the signal tile assembly model. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 118–132. Springer, Cham (2013). doi: 10.1007/978-3-319-01928-4_9 CrossRefGoogle Scholar
- 10.von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25(10), 932–935 (1986)CrossRefGoogle Scholar
- 11.Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: compact, robust programmable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77962-9_2 CrossRefGoogle Scholar
- 12.Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)CrossRefGoogle Scholar
- 13.Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, pp. 459–468. ACM (2000)Google Scholar
- 14.Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 734–743. Springer, Heidelberg (2005). doi: 10.1007/11553090_74 CrossRefGoogle Scholar
- 15.Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. Proc. Natl. Acad. Sci. 109(17), 6405–6410 (2012)CrossRefGoogle Scholar
- 16.Szathmry, E., Gladkih, I.: Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138(1), 55–58 (1989)CrossRefGoogle Scholar
- 17.Wang, H.: Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1–42 (1961)CrossRefGoogle Scholar
- 18.Wang, T., Sha, R., Dreyfus, R., Leunissen, M.E., Maass, C., Pine, D.J., Chaikin, P.M., Seeman, N.C.: Self-replication of information-bearing nanoscale patterns. Nature 478(7368), 225–228 (2011)CrossRefGoogle Scholar
- 19.Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
- 20.Winfree, E.: Algorithmic Self-Assembly of DNA. Ph. D. thesis, California Institute of Technology Pasadena, California, USA (1998)Google Scholar
- 21.Winfree, E., Bekbolatov, R.: Proofreading tile sets: error correction for algorithmic self-assembly. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24628-2_13 CrossRefGoogle Scholar
- 22.Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRefGoogle Scholar
- 23.Zhang, D.Y., Yurke, B.: A DNA superstructure-based replicator without product inhibition. Nat. Comput. 5(2), 183–202 (2006)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG 2017