Multi-objective Bat Algorithm for Mining Interesting Association Rules

  • Kamel Eddine Heraguemi
  • Nadjet Kamel
  • Habiba Drias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10089)

Abstract

Association rule mining problem attracts the attention of researchers inasmuch to its importance and applications in our world with the fast growth of the stored data. Association rule mining process is computationally very expensive because rules number grows exponentially as items number in the database increases. However, Association rule mining is more complex when we introduce the quality criteria and usefulness to the user. This paper deals with association rule mining issue in which we propose Multi-Objective Bat algorithm for association rules mining Known as MOB-ARM. With the aim of extract more useful and understandable rules. We introduce four quality measures of association rules: Support, Confidence, Comprehensibility, and Interestingness in two objective functions considered for maximization. A series of experiments are carried out on several well-known benchmarks in association rule mining field and the performance of our proposal are evaluated and compared with those of other recently published methods including mono-objective and multi-objective approaches. The outcomes show a clear superiority of our proposal in-face-of mono objective methods in terms generated rules number and rule quality. Also, The analysis also shows a competitive outcomes in terms of quality against multi-objective optimization methods.

Keywords

Association rules mining ARM Bat algorithm Multi-objective optimization Support Confidence Comprehensibility Interestingness 

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD Record, vol. 22, pp. 207–216. ACM (1993)Google Scholar
  2. 2.
    Alatas, B., Akin, E., Karci, A.: Modenar: multi-objective differential evolution algorithm for mining numeric association rules. Appl. Soft Comput. 8(1), 646–656 (2008)CrossRefGoogle Scholar
  3. 3.
    Angiulli, F., Ianni, G., Palopoli, L.: On the complexity of mining association rules. In: SEBD, pp. 177–184 (2001)Google Scholar
  4. 4.
    Beiranvand, V., Mobasher-Kashani, M., Bakar, A.A.: Multi-objective PSO algorithm for mining numerical association rules without a priori discretization. Expert Syst. Appl. 41(9), 4259–4273 (2014)CrossRefGoogle Scholar
  5. 5.
    Coello, C.A., Coello, D.A., Veldhuizen, V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 242. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Djenouri, Y., Drias, H., Habbas, Z., Mosteghanemi, H.: Bees swarm optimization for web association rule mining. In: 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 3, pp. 142–146. IEEE (2012)Google Scholar
  7. 7.
    Djenouri, Y., Drias, H., Habbas, Z.: Bees swarm optimisation using multiple strategies for association rule mining. Int. J. Bio-Inspired Comput. 6(4), 239–249 (2014)CrossRefGoogle Scholar
  8. 8.
    Ganghishetti, P., Vadlamani, R.: Association rule mining via evolutionary multi-objective optimization. In: Murty, M.N., He, X., Chillarige, R.R., Weng, P. (eds.) MIWAI 2014. LNCS (LNAI), vol. 8875, pp. 35–46. Springer, Cham (2014). doi:10.1007/978-3-319-13365-2_4 Google Scholar
  9. 9.
    Goethls, B., Zaki, M.J.: Frequent itemset mining dataset repository (2003). http://fimi.ua.ac.be/data/
  10. 10.
    Guvenir, H.A., Uysal, I.: Bilkent university function approximation repository (2000). http://funapp.cs.bilkent.edu.tr/DataSets/
  11. 11.
    Heraguemi, K.E., Kamel, N., Drias, H.: Association rule mining based on bat algorithm. J. Comput. Theor. Nanosci. 12(7), 1195–1200 (2015)CrossRefGoogle Scholar
  12. 12.
    Heraguemi, K.E., Kamel, N., Drias, H.: Multi-population cooperative bat algorithm for association rule mining. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9329, pp. 265–274. Springer, Cham (2015). doi:10.1007/978-3-319-24069-5_25 CrossRefGoogle Scholar
  13. 13.
    Heraguemi, K.E., Kamel, N., Drias, H.: Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl. Intell. 45(4), 1021–1033 (2016). SpringerGoogle Scholar
  14. 14.
    Kabir, M.M.J., Xu, S., Kang, B.H., Zhao, Z.: A new evolutionary algorithm for extracting a reduced set of interesting association rules. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 133–142. Springer, Cham (2015). doi:10.1007/978-3-319-26535-3_16 CrossRefGoogle Scholar
  15. 15.
    Minaei-Bidgoli, B., Barmaki, R., Nasiri, M.: Mining numerical association rules via multi-objective genetic algorithms. Inf. Sci. 233, 15–24 (2013)CrossRefGoogle Scholar
  16. 16.
    Al-maqaleh, M.B.: Discovering interesting association rules: a multi-objective genetic algorithm approach. Int. J. Appl. Inf. Syst. 5(3), 47–52 (2013)Google Scholar
  17. 17.
    Olmo, J.L., Luna, J.M., Romero, J.R., Ventura, S.: Association rule mining using a multi-objective grammar-based ant programming algorithm. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 971–977, November (2011)Google Scholar
  18. 18.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12538-6_6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kamel Eddine Heraguemi
    • 1
  • Nadjet Kamel
    • 1
  • Habiba Drias
    • 2
  1. 1.Depart. Computer Science, Fac-SciencesUniv-SetifSetifAlgeria
  2. 2.Depart. Computer ScienceUSTHBAlgiersAlgeria

Personalised recommendations