Determining the Balance Scorecard in Sheet Metal Industry Using the Intuitionistic Fuzzy Analytical Hierarchy Process with Fuzzy Delphi Method

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10089)

Abstract

Balance Scorecard (BS) is an important part of human resource management in any organization or industry. It used to cascade the organization vision and its expectation and develop the employment capability. Balance scorecard may have many factors. In order to produce the best product and to retain the trust of customers, the industry should be able to identify which area has to be concentrated with higher priority in the Balance Scorecard. This situation lead with an uncertainty to multi criteria decision making. In this work, an attempt has been made for ranking the factors in the Balance Scorecard using Intuitionistic fuzzy analytical hierarchy process with fuzzy Delphi method.

Keywords

Intuitionistic fuzzy analytical hierarchy process Analytical Hierarchy Process Human resource 

References

  1. 1.
    Klir, G.J.: Fuzzy Set and Fuzzy Logic Theory and Application. PTR Publisher, New York (1995)MATHGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Xu, Z., Liao, H.: Intuitionistic fuzzy analytic hierarchy process. IEEE Trans. Fuzzy Syst. 22(4), 749–761 (2014)CrossRefGoogle Scholar
  5. 5.
    Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management Science. Elsevier Science Inc., New York (1988)MATHGoogle Scholar
  7. 7.
    Hsu, Y.L., Lee, C.H., Kreng, V.B.: The application of fuzzy delphi method and fuzzy ahp in lubricant regenerative technology selection. Expert Syst. Appl. 37(1), 419–425 (2010)CrossRefGoogle Scholar
  8. 8.
    Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Saaty, T.: The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York (1980)MATHGoogle Scholar
  10. 10.
    Akram, M., Shahzad, S., Butt, A., Khaliq, A.: Intuitionistic fuzzy logic control for heater fans. Math. Comput. Sci. 7(3), 367–378 (2013)CrossRefMATHGoogle Scholar
  11. 11.
    Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy sets in some medical applications. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 148–151. Springer, Heidelberg (2001). doi:10.1007/3-540-45493-4_19 CrossRefGoogle Scholar
  12. 12.
    Sadiq, R., Tesfamariam, S.: Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch. Env. Res. Risk Assess. 23, 75–91 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rajaprakash, S., Ponnusamy, R., Pandurangan, J.: Determining the customer satisfaction in automobile sector using the intuitionistic fuzzy analytical hierarchy process. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891, pp. 239–255. Springer, Cham (2014). doi:10.1007/978-3-319-13817-6_24 Google Scholar
  14. 14.
    Chen, Y.C., Yu, T.H., Tsui, P.L., Lee, C.S.: A fuzzy ahp approach to construct international hotel spa atmosphere evaluation model. Quality 48(2), 645–657 (2014)Google Scholar
  15. 15.
    Catak, F.O., Karabas, S., Yildirim, S.: Fuzzy analytic hierarchy based DBMS selection in Turkish National Identity Card Management project. Int. J. Inf. Sci. Tech. (IJIST) 2(4), 29–38 (2012)Google Scholar
  16. 16.
    Izadikhah, M.: Group decision making process for supplier selection with TOPSIS method under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Syst. 2012(2), 2 (2012)MathSciNetMATHGoogle Scholar
  17. 17.
    Rajaprakash, S., Ponnusamy, R.: Determining students expectation in present education system using fuzzy analytic hierarchy process. In: Prasath, R., Kathirvalavakumar, T. (eds.) MIKE 2013. LNCS (LNAI), vol. 8284, pp. 553–566. Springer, Cham (2013). doi:10.1007/978-3-319-03844-5_55 CrossRefGoogle Scholar
  18. 18.
    Abdullah, L., Jaafar, S., Taib, I.: Intuitionistic fuzzy analytic hierarchy process approach in ranking of human capital indicators. J. Appl. Sci. 13(3), 423–429 (2013)CrossRefGoogle Scholar
  19. 19.
    Tapan Kumar, R., Garai, A.: Intuitionistic fuzzy delphi method: more realistic and interactive forecasting tool. Notes Intuitionistic Fuzzy Sets 18(50), 37–50 (2012)Google Scholar
  20. 20.
    Xu, Z.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177(11), 2363–2379 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kong, F., Liu, H.: Appling fuzzy analytic hierarchy process to Evaluate Success Factors of E-Commerce. Int. J. Inf. Syst. Sci. 1(3–4), 406–412 (2005)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSri Chandrasekarendra Saraswathi Viswa Maha Vidyalaya [SCSVMV]KanchipuramIndia
  2. 2.Department of Computer Science and EngineeringRajiv Gandhi College of EngineeringChennaiIndia

Personalised recommendations