Crowdsourced Affinity: A Matter of Fact or Experience

  • Chun Lu
  • Milan Stankovic
  • Filip Radulovic
  • Philippe Laublet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10249)

Abstract

User-entity affinity is an essential component of many user-centric information systems such as online advertising, exploratory search, recommender system etc. The affinity is often assessed by analysing the interactions between users and entities within a data space. Among different affinity assessment techniques, content-based ones hypothesize that users have higher affinity with entities similar to the ones with which they had positive interactions in the past. Knowledge graph and folksonomy are respectively the milestones of Semantic Web and Social Web. Despite their shared crowdsourcing trait (not necessarily all knowledge graphs but some major large-scale ones), the encoded data are different in nature and structure. Knowledge graph encodes factual data with a formal ontology. Folksonomy encodes experience data with a loose structure. Many efforts have been made to make sense of folksonomy and to structure the community knowledge inside. Both data spaces allow to compute similarity between entities which can thereafter be used to calculate user-entity affinity. In this paper, we are interested in observing their comparative performance in the affinity assessment task. To this end, we carried out a first experiment within a travel destination recommendation scenario on a gold standard dataset. Our main findings are that knowledge graph helps to assess more accurately the affinity but folksonomy helps to increase the diversity and the novelty. This interesting complementarity motivated us to develop a semantic affinity framework to harvest the benefits of both data spaces. A second experiment with real users showed the utility of the proposed framework and confirmed our findings.

Keywords

Crowdsourcing Affinity Similarity Semantic Knowledge graph Folksonomy Travel e-tourism Semantic affinity framework Diversity Novelty 

References

  1. 1.
    McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Chikkerur, S.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1222–1230. ACM (2013)Google Scholar
  2. 2.
    Waitelonis, J., Sack, H.: Towards exploratory video search using linked data. Multimed. Tools Appl. 59(2), 645–672 (2012)CrossRefGoogle Scholar
  3. 3.
    Krulwich, B.: Lifestyle finder: intelligent user profiling using large-scale demographic data. AI Mag. 18(2), 37 (1997)Google Scholar
  4. 4.
    Candillier, L., Meyer, F., Boullé, M.: Comparing state-of-the-art collaborative filtering systems. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 548–562. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73499-4_41 CrossRefGoogle Scholar
  5. 5.
    Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, New York (2011)CrossRefGoogle Scholar
  6. 6.
    Di Noia, T., Ostuni, V.C.: Recommender systems and linked open data. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 88–113. Springer, Cham (2015). doi:10.1007/978-3-319-21768-0_4 CrossRefGoogle Scholar
  7. 7.
    Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From freebase to wikidata: the great migration. In: Proceedings of the 25th International Conference on World Wide Web, pp. 1419–1428 (2016)Google Scholar
  8. 8.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9_16 Google Scholar
  9. 9.
    Bontcheva, K., Rout, D.: Making sense of social media streams through semantics: a survey. Semant. Web 5(5), 373–403 (2014)Google Scholar
  10. 10.
    Passant, A., Laublet, P.: Meaning of a tag: a collaborative approach to bridge the gap between tagging and linked data. In: Proceedings of Linked Data on the Web Workshop (2008)Google Scholar
  11. 11.
    Mika, P.: Ontologies are us: a unified model of social networks and semantics. Web Semant. Sci. Serv. Agents World Wide Web 5(1), 5–15 (2007)CrossRefGoogle Scholar
  12. 12.
    Cantador, I., Konstas, I., Jose, J.M.: Categorising social tags to improve folksonomy-based recommendations. Web Seman. Sci. Serv. Agents World Wide Web 9(1), 1–15 (2011)CrossRefGoogle Scholar
  13. 13.
    Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88564-1_39 CrossRefGoogle Scholar
  14. 14.
    Szomszor, M., Alani, H., Cantador, I., O’Hara, K., Shadbolt, N.: Semantic modelling of user interests based on cross-folksonomy analysis. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 632–648. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88564-1_40 CrossRefGoogle Scholar
  15. 15.
    Orlandi, F., Breslin, J., Passant, A.: Aggregated, interoperable and multi-domain user profiles for the social web. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 41–48. ACM (2012)Google Scholar
  16. 16.
    Abel, F., Herder, E., Houben, G.J., Henze, N., Krause, D.: Cross-system user modeling and personalization on the social web. User Model. User-Adap. Inter. 23(2–3), 169–209 (2013)CrossRefGoogle Scholar
  17. 17.
    Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on twitter using a hierarchical knowledge base. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 99–113. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6_8 CrossRefGoogle Scholar
  18. 18.
    Piao, G., Breslin, J.: Exploring dynamics and semantics of user interests for user modeling on Twitter for link recommendations. In: Proceedings of the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany (2016)Google Scholar
  19. 19.
    Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., Servedio, V.D.P.: Folksonomies, the semantic web, and movie recommendation. In: Proceedings of the Workshop on Bridging the Gap between Semantic Web and Web 2.0 at the 4th ESWC (2007)Google Scholar
  20. 20.
    Semeraro, G., Lops, P., De Gemmis, M., Musto, C., Narducci, F.: A folksonomy-based recommender system for personalized access to digital artworks. J. Comput. Cult. Heritage (JOCCH) 5(3), 11 (2012)Google Scholar
  21. 21.
    Gruber, T.: Collective knowledge systems: where the social web meets the semantic web. Web Web Semant. Sci. Serv. Agents World Wide Web 6(1), 4–13 (2008)CrossRefGoogle Scholar
  22. 22.
    Vig, J., Sen, S., Riedl, J.: The tag genome: encoding community knowledge to support novel interaction. ACM Trans. Interact. Intell. Syst. 2(3), Article 13 (2102)Google Scholar
  23. 23.
    Zhu, G., Iglesias, C.A.: Computing semantic similarity of concepts in knowledge graphs. IEEE Trans. Knowl. Data Eng. 29(1), 72–85 (2016)CrossRefGoogle Scholar
  24. 24.
    Passant, A.: dbrec—music recommendations using DBpedia. In: Patel-Schneider, P.F., et al. (eds.) Proceedings of the 9th International Semantic Web conference. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Piao, G., Breslin, J.: Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM (2016)Google Scholar
  26. 26.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 1–8. ACM (2012)Google Scholar
  27. 27.
    Di Noia, T., Ostuni, V.C., Tomeo, P., Di Sciascio, E.: Sprank: semantic path-based ranking for top-n recommendations using linked open data. ACM Trans. Intell. Syst. Technol. (TIST) 8, 9 (2016)Google Scholar
  28. 28.
    Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4_30 CrossRefGoogle Scholar
  29. 29.
    Heitmann, B.: An open framework for multi-source, cross-domain personalisation with semantic interest graphs. Doctoral dissertation. National University of Ireland, Galway (2014)Google Scholar
  30. 30.
    Kaminskas, M., Fernández-Tobías, I., Ricci, F., Cantador, I.: Knowledge-based identification of music suited for places of interest. Inf. Technol. Tourism 14(1), 73–95 (2014)CrossRefGoogle Scholar
  31. 31.
    Marie, N.: Linked data based exploratory search. Doctoral dissertation. Université de Nice Sophia-Antipolis (2014)Google Scholar
  32. 32.
    Lu, C., Laublet, P., Stankovic, M.: Travel attractions recommendation with knowledge graphs. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 416–431. Springer, Cham (2016). doi:10.1007/978-3-319-49004-5_27 CrossRefGoogle Scholar
  33. 33.
    Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)CrossRefGoogle Scholar
  34. 34.
    Nguyen, P.T., Tomeo, P., Noia, T., Sciascio, E.: Content-based recommendations via DBpedia and freebase: a case study in the music domain. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 605–621. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6_35 CrossRefGoogle Scholar
  35. 35.
    Noia, T., Cantador, I., Ostuni, V.C.: Linked open data-enabled recommender systems: ESWC 2014 challenge on book recommendation. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Iorio, A., Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 129–143. Springer, Cham (2014). doi:10.1007/978-3-319-12024-9_17 Google Scholar
  36. 36.
    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  37. 37.
    Lu, C., Laublet, P., Stankovic, M.: Ricochet: context and complementarity-aware, ontology-based POIs recommender system. In: Proceedings of SALAD at the 14th Extended Semantic Web Conference, pp. 10–17 (2014)Google Scholar
  38. 38.
    Lu, C., Stankovic, M., Laublet, P.: Leveraging semantic web technologies for more relevant E-tourism behavioral retargeting. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1287–1292. ACM (2015)Google Scholar
  39. 39.
    Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 47–56. ACM (2009)Google Scholar
  40. 40.
    Lu, C., Stankovic, M., Laublet, P.: Desperately searching for travel offers? formulate better queries with some help from linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 621–636. Springer, Cham (2015). doi:10.1007/978-3-319-18818-8_38 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chun Lu
    • 1
    • 2
  • Milan Stankovic
    • 1
    • 2
  • Filip Radulovic
    • 1
  • Philippe Laublet
    • 2
  1. 1.SépageParisFrance
  2. 2.STIHUniversité Paris-SorbonneParisFrance

Personalised recommendations