Subjective Evaluation of Tactile Fidelity for Single-Finger and Whole-Hand Touch Gestures

  • Fei Tang
  • Ryan P. McMahan
  • Eric D. Ragan
  • Tandra T. Allen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10280)

Abstract

This paper presents a study on the effects of tactile fidelity—the degree of exactness with which real-world tactile stimuli are reproduced—on the perception of single-finger and whole-hand touch gestures. We developed an arm-based tactile display consisting of a four-by-three grid of linear resonant actuator motors to facilitate our investigation. This device supported two extreme levels of tactile fidelity by using an extension of the previously defined Tactile Brush algorithm. At the highest level, all twelve motors could be used to provide an average displayed tactile resolution of one actuation per 12 cm2. At the lowest level, the four corner motors of the grid could be used to provide an average displayed tactile resolution of one actuation per 36 cm2. We conducted a study in which every participant blindly compared these two levels of tactile fidelity for four single-finger touch gestures and six whole-hand touch gestures. Our results indicated that the higher level of tactile fidelity was significantly preferred and accepted for all six whole-hand touch gestures and for two of the four single-finger gestures. We discuss the implications of these results for the development of grid-based tactile displays and provide some virtual reality application areas that could take advantage of using whole-hand touch gestures.

Keywords

Tactile fidelity Touch gestures Displayed tactile resolution 

References

  1. 1.
    von Békésy, G.: Sensations on the skin similar to directional hearing, beats, and harmonics of the ear. J. Acoust. Soc. Am. 29, 489–501 (1957)CrossRefGoogle Scholar
  2. 2.
    Chen, L.M., Friedman, R.M., Roe, A.W.: Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302, 881–885 (2003)CrossRefGoogle Scholar
  3. 3.
    Sherrick, C.E., Rogers, R.: Apparent haptic movement. Percept. Psychophys. 1, 175–180 (1966)CrossRefGoogle Scholar
  4. 4.
    Israr, A., Poupyrev, I.: Control space of apparent haptic motion. In: World Haptics Conference (WHC), pp. 457–462. IEEE (2011)Google Scholar
  5. 5.
    Pasquero, J., Hayward, V.: STReSS: a practical tactile display system with one millimeter spatial resolution and 700 Hz refresh rate. In: Eurohaptics, pp. 94–110 (2003)Google Scholar
  6. 6.
    Johnson, K.O., Phillips, J.R.: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. J. Neurophysiol. 46, 1177–1192 (1981)Google Scholar
  7. 7.
    Morrison, I., Löken, L., Olausson, H.: The skin is a social organ. Exp. Brain Res. 204, 305–314 (2010)CrossRefGoogle Scholar
  8. 8.
    Israr, A., Poupyrev, I.: Tactile brush: drawing on skin with a tactile grid display. In: ACM Conference on Human Factors in Computing Systems (CHI), pp. 2019–2028. ACM (2011)Google Scholar
  9. 9.
    Collins, C.C.: Tactile television—mechanical and electrical image projection. IEEE Trans. Man Mach. Syst. 11, 65–71 (1970)CrossRefGoogle Scholar
  10. 10.
    Loomis, J.: Tactile letter recognition under different modes of stimulus presentation. Percept. Psychophys. 16, 401–408 (1974)CrossRefGoogle Scholar
  11. 11.
    Saida, S., Shimizu, Y., Wake, T.: Construction of small TVSS and optimal mode of stimulus presentation. In: 4th Symposium on Sensory Substitution, Ibaraki, Japan (1978)Google Scholar
  12. 12.
    Yanagida, Y., Kakita, M., Lindeman, R.W., Kume, Y., Tetsutani, N.: Vibrotactile letter reading using a low-resolution tactor array. In: 12th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS), pp. 400–406 (2004)Google Scholar
  13. 13.
    Tan, H.Z., Pentland, A.: Tactual displays for wearable computing. Pers. Technol. 1, 225–230 (1997)CrossRefGoogle Scholar
  14. 14.
    Tan, H., Lim, A., Traylor, R.: A psychophysical study of sensory saltation with an open response paradigm. ASME Dyn. Syst. Control Div. 69, 1109–1115 (2000). The American Society of Mechanical EngineersGoogle Scholar
  15. 15.
    Schönauer, C., Fukushi, K., Olwal, A., Kaufmann, H., Raskar, R.: Multimodal motion guidance: techniques for adaptive and dynamic feedback. In: 14th ACM International Conference on Multimodal Interaction, pp. 133–140. ACM (2012)Google Scholar
  16. 16.
    Shimizu, Y.: Temporal effect on tactile letter recognition by a tracing mode. Percept. Mot. Skills 55, 343–349 (1982)CrossRefGoogle Scholar
  17. 17.
    Niwa, M., Lindeman, R.W., Itoh, Y., Kishino, F.: Determining appropriate parameters to elicit linear and circular apparent motion using vibrotactile cues. In: World Haptics Conference (WHC), pp. 75–78. IEEE (2009)Google Scholar
  18. 18.
    Cholewiak, R.W., Collins, A.A.: Vibrotactile localization on the arm: effects of place, space, and age. Percept. Psychophys. 65, 1058–1077 (2003)CrossRefGoogle Scholar
  19. 19.
    Seo, J., Choi, S.: Initial study for creating linearly moving vibrotactile sensation on mobile device. In: IEEE Haptics Symposium, pp. 67–70 (2010)Google Scholar
  20. 20.
    Cha, J., Rahal, L., El Saddik, A.: A pilot study on simulating continuous sensation with two vibrating motors. In: IEEE Symposium on Haptic Audio Visual Environments and Games (HAVE), pp. 143–147 (2008)Google Scholar
  21. 21.
    Tang, F., McMahan, R.P., Allen, T.T.: Development of a low-cost tactile sleeve for autism intervention. In: IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE), pp. 35–40 (2014)Google Scholar
  22. 22.
    Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput. Hum. Interact. (TOCHI) 2, 201–219 (1995)CrossRefGoogle Scholar
  23. 23.
    Huisman, G., Darriba Frederiks, A., Van Dijk, B., Hevlen, D., Krose, B.: The TaSST: tactile sleeve for social touch. In: World Haptics Conference (WHC), pp. 211–216. IEEE (2013)Google Scholar
  24. 24.
    American Psychiatric Association: Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Publishing (2000)Google Scholar
  25. 25.
    Abu-Dahab, S., Skidmore, E., Holm, M., Rogers, J., Minshew, N.: Motor and tactile-perceptual skill differences between individuals with high-functioning autism and typically developing individuals ages 5–21. J. Autism Dev. Disord. 43, 2241–2248 (2013)CrossRefGoogle Scholar
  26. 26.
    Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K., Essick, G.: Tactile perception in adults with autism: a multidimensional psychophysical study. J. Autism Dev. Disord. 38, 127–137 (2008)CrossRefGoogle Scholar
  27. 27.
    Güçlü, B., Tanidir, C., Mukaddes, N., Unal, F.: Tactile sensitivity of normal and autistic children. Somatosen. Mot. Res. 24, 21–33 (2007)CrossRefGoogle Scholar
  28. 28.
    Wang, M., Reid, D.: Virtual reality in pediatric neurorehabilitation: attention deficit hyperactivity disorder, autism and cerebral palsy. Neuroepidemiology 36, 2–18 (2011)CrossRefGoogle Scholar
  29. 29.
    Cesaroni, L., Garber, M.: Exploring the experience of autism through firsthand accounts. J. Autism Dev. Disord. 21, 303–313 (1991)CrossRefGoogle Scholar
  30. 30.
    Grandin, T.: An inside view of autism. In: Schopler, E., Mesibov, G.B. (eds.) High Functioning Individuals with Autism, pp. 105–126. Plenum, New York (1992)CrossRefGoogle Scholar
  31. 31.
    Jones, R.P., Quigney, C., Huws, J.C.: First-hand accounts of sensory perceptual experiences in autism: a qualitative analysis. J. Intell. Dev. Disabil. 28, 112–121 (2003)CrossRefGoogle Scholar
  32. 32.
    Josman, N., Ben-Chaim, H.M., Fridrich, S., Weiss, P.L.: Effectiveness of virtual reality for teaching street-crossing skills to children and adolescents with autism. Int. J. Disabil. Hum. Dev. 7, 49–56 (2008)CrossRefGoogle Scholar
  33. 33.
    Herrera, G., Alcantud, F., Jordan, R., Blanquer, A., Labajo, G., De Pablo, C.: Development of symbolic play through the use of virtual reality tools in children with autistic spectrum disorders: two case studies. Autism Int. J. Res. Pract. 12, 143–157 (2008)CrossRefGoogle Scholar
  34. 34.
    Cheng, Y., Ye, J.: Exploring the social competence of students with autism spectrum conditions in a collaborative virtual learning environment—the pilot study. Comput. Educ. 54, 1068–1077 (2010)CrossRefGoogle Scholar
  35. 35.
    Moore, D., Cheng, Y., McGrath, P., Powell, N.J.: Collaborative virtual environment technology for people with autism. Focus Autism Other Dev. Disabil. 20, 231–243 (2005)CrossRefGoogle Scholar
  36. 36.
    Kandalaft, M., Didehbani, N., Krawczyk, D., Allen, T., Chapman, S.: Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 43, 34–44 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fei Tang
    • 1
  • Ryan P. McMahan
    • 1
  • Eric D. Ragan
    • 2
  • Tandra T. Allen
    • 1
  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations