A Taxonomy of Workflow Scheduling Algorithms

  • Fernando Aguilar-Reyes
  • J. Octavio Gutierrez-Garcia
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 697)

Abstract

A workflow is a set of steps or tasks that model the execution of a process, e.g., protein annotation, invoice generation and composition of astronomical images. Workflow applications commonly require large computational resources. Hence, distributed computing approaches (such as Grid and Cloud computing) emerge as a feasible solution to execute them. Two important factors for executing workflows in distributed computing platforms are (1) workflow scheduling and (2) resource allocation. As a consequence, there is a myriad of workflow scheduling algorithms that map workflow tasks to distributed resources subject to task dependencies, time and budget constraints. In this paper, we present a taxonomy of workflow scheduling algorithms, which categorizes the algorithms into (1) best-effort algorithms (including heuristics, metaheuristics, and approximation algorithms) and (2) quality-of-service algorithms (including budget-constrained, deadline-constrained and algorithms simultaneously constrained by deadline and budget). In addition, a workflow engine simulator was developed to quantitatively compare the performance of scheduling algorithms.

Keywords

Workflow scheduling Distributed computing Scheduling algorithms 

References

  1. 1.
    Agrawal, K., Benoit, A., Magnan, L., Robert, Y.: Scheduling algorithms for linear workflow optimization. In: 2010 IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–12. IEEE (2010)Google Scholar
  2. 2.
    Bajaj, R., Agrawal, D.: Improving scheduling of tasks in a heterogeneous environment. IEEE Trans. Parallel Distrib. Syst. 15(2), 107–118 (2004)CrossRefGoogle Scholar
  3. 3.
    Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task scheduling strategies for workflow-based applications in grids. In: IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2005, vol. 2, pp. 759–767. IEEE (2005)Google Scholar
  4. 4.
    Bmv, G.: Informe Anual 2012. Technical report, Bolsa Mexicana de Valores (2012)Google Scholar
  5. 5.
    Brandic, I., Pllana, S., Benkner, S.: Amadeus: a holistic service-oriented environment for grid workflows. In: Fifth International Conference on Grid and Cooperative Computing Workshops, GCCW 2006, pp. 259–266. IEEE (2006)Google Scholar
  6. 6.
    Kannas, C.C., Kalvari, I., Lambrinidis, G., Neophytou, M.C., Savva, G.C., Kirmitzoglou, I., Antoniou, Z., Achilleos, K.G., Scherf, D., Pitta, A.C., et al.: Lisis: an online scientific workflow system for virtual screening. Comb. Chem. High Throughput Screen. 18(3), 281–295 (2015)CrossRefGoogle Scholar
  7. 7.
    Chekuri, C., Bender, M.: An efficient approximation algorithm for minimizing makespan on uniformly related machines. J. Algorithms 41(2), 212–224 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.H., Vahi, K., Livny, M.: Pegasus: mapping scientific workflows onto the grid. In: Grid Computing, pp. 11–20. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  10. 10.
    Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: state of the art and open problems. Technical report (2006)Google Scholar
  11. 11.
    Kofler, K., Haq, I.U., Schikuta, E.: A parallel branch and bound algorithm for workflow QoS optimization. In: International Conference on Parallel Processing, ICPP 2009, pp. 478–485. IEEE (2009)Google Scholar
  12. 12.
    Li, S., Hu, S., Wang, S., Su, L., Abdelzaher, T., Gupta, I., Pace, R.: Woha: deadline-aware map-reduce workflow scheduling framework over hadoop clusters. In: 2014 IEEE 34th International Conference on Distributed Computing Systems (ICDCS), pp. 93–103. IEEE (2014)Google Scholar
  13. 13.
    Maheswaran, M., Ali, S., Siegal, H., Hensgen, D., Freund, R.F.: Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems. In: Proceedings of Eighth Heterogeneous Computing Workshop, (HCW 1999), pp. 30–44. IEEE (1999)Google Scholar
  14. 14.
    Mair, M., Qin, J., Wieczorek, M., Fahringer, T.: Workflow conversion and processing in the ASKALON grid environment. In: 2nd Austrian Grid Symposium, pp. 67–80. Citeseer (2007)Google Scholar
  15. 15.
    Menasce, D.A., Casalicchio, E.: A framework for resource allocation in grid computing. In: MASCOTS, pp. 259–267 (2004)Google Scholar
  16. 16.
    Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer Science & Business Media, Berlin (2012)CrossRefMATHGoogle Scholar
  17. 17.
    Ramamritham, K., Stankovic, J.A., Shiah, P.F.: Efficient scheduling algorithms for real-time multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 1(2), 184–194 (1990)CrossRefGoogle Scholar
  18. 18.
    Sakellariou, R., Zhao, H.: A hybrid heuristic for DAG scheduling on heterogeneous systems. In: Proceedings of 18th International Parallel and Distributed Processing Symposium, p. 111, April 2004Google Scholar
  19. 19.
    Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research in GRID Computing, pp. 189–202. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Shiers, J.: The worldwide LHC computing grid (worldwide LCG). Comput. Phys. Commun. 177(1), 219–223 (2007)CrossRefGoogle Scholar
  21. 21.
    Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)CrossRefGoogle Scholar
  22. 22.
    Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wieczorek, M., Hoheisel, A., Prodan, R.: Taxonomies of the multi-criteria grid workflow scheduling problem. In: Wieczorek, M., Hoheisel, A., Prodan, R. (eds.) Grid Middleware and Services, pp. 237–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Wieczorek, M., Hoheisel, A., Prodan, R.: Towards a general model of the multi-criteria workflow scheduling on the grid. Future Gener. Comput. Syst. 25(3), 237–256 (2009)CrossRefGoogle Scholar
  25. 25.
    Young, L., McGough, S., Newhouse, S., Darlington, J.: Scheduling architecture and algorithms within the ICENI grid middleware. In: UK e-Science All Hands Meeting, pp. 5–12. Citeseer (2003)Google Scholar
  26. 26.
    Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. ACM Sigmod Rec. 34(3), 44–49 (2005)CrossRefGoogle Scholar
  27. 27.
    Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Sci. Program. 14(3), 217–230 (2006)Google Scholar
  28. 28.
    Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments, pp. 173–214. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow applications on utility grids. In: 2005 First International Conference on e-Science and Grid Computing, p. 8. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fernando Aguilar-Reyes
    • 1
  • J. Octavio Gutierrez-Garcia
    • 1
  1. 1.Department of Computer ScienceITAMMexico CityMexico

Personalised recommendations