Multiscale, Coupled Chemo-mechanical Modeling of Bainitic Transformation During Press Hardening

  • Ulrich Prahl
  • Mingxuan Lin
  • Marc Weikamp
  • Claas Hueter
  • Diego Schicchi
  • Martin Hunkel
  • Robert Spatschek
Chapter

Abstract

We present our recent developments in multiscale and multiphysics modeling of bainite formation under mechanical loads in the press hardening process. The full field description of the bainitic microstructure by a multi-phase field model is linked to a crystal plasticity model at micrometer scale to simulate the mutual interaction between the phase transformation and plastic accommodation of the lattice distortion. Homogenized parameters of the phase fields are then coupled with a finite element model at a larger length scale to facilitate the calculation of transformation plasticity. The crystallographic features, transformation strain and texture of the simulated phase structure are discussed with comparison with experimental observations.

Keywords

Phase field Crystal plasticity Bainite Press hardening 

References

  1. 1.
  2. 2.
    A. Abdollahpoor, X. Chen, M.P. Pereira, N. Xiao, B.F. Rolfe, Sensitivity of the final properties of tailored hot stamping components to the process and material parameters. J. Mater. Process. Technol. (2015)Google Scholar
  3. 3.
    H.K.D.H. Bhadeshia, Bainite in steels: Transformations, microstructure and properties, 2nd edn. (IOM Communications, London, 2001)Google Scholar
  4. 4.
    H.K.D.H. Bhadeshia, Worked Examples in the Geometry of Crystals, 2nd edn. (Institute of Metals, Brookfield, VT, USA, 2001)Google Scholar
  5. 5.
    M. Diehl, A spectral method using fast Fourier transform to solve elastoviscoplastic mechanical boundary value problems. Master’s thesis, Technische Universitaet Muenchen, Munich, 2010Google Scholar
  6. 6.
    P. Eisenlohr, M. Diehl, R.A. Lebensohn, F. Roters, A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast. 46, 37–53 (2013)CrossRefGoogle Scholar
  7. 7.
    K. Hase, C. Garcia-Mateo, H.K.D.H. Bhadeshia, Bainite formation influenced by large stress. Mater. Sci. Technol. 20(12), 1499–1505 (2004)CrossRefGoogle Scholar
  8. 8.
    C. Huter, M. Lin, D. Schicchi, M. Hunkel, U. Prahl, R. Spatschek, A multiscale perspective on the kinetics of solid state transformations with application to bainite formation. AIMS Mater. Sci. 2(4), 319–345 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Kundu, K. Hase, H.K.D.H. Bhadeshia, Crystallographic texture of stress-affected bainite. Proc. R. Soc. A: Math. Phys. Eng. Sci. 463(2085), 2309–2328 (2007)Google Scholar
  10. 10.
    M. Lin, U. Prahl, A parallelized model for coupled phase field and crystal plasticity simulation. Computer Methods in Materials Science. 16(3), 156–162 (2016)Google Scholar
  11. 11.
    M. Naderi, M. Abbasi, A. Saeed-Akbari, Enhanced mechanical properties of a hot-stamped advanced high-strength steel via tempering treatment. Metall. Mater. Trans. A 44(4), 1852–1861 (2013)CrossRefGoogle Scholar
  12. 12.
    F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal plasticity finite element methods, in Materials Science and Engineering (Wiley, Somerset, 2011)Google Scholar
  14. 14.
    D.M. Saylor, J. Fridy, B.S. El-Dasher, K.-Y. Jung, A.D. Rollett, Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall. Mater. Trans. A 35(7), 1969–1979 (2004)Google Scholar
  15. 15.
    D.S. Schicchi, M. Lin, U. Prahl, M. Hunkel, A combined finite element—phase field model approach on the bainitic transformation, in Proceedings of European Conference on Heat Treatment (2016)Google Scholar
  16. 16.
    G.J. Schmitz, A. Engstrom, R. Bernhardt, U. Prahl, L. Adam, J. Seyfarth, M. Apel, C. Agelet de Saracibar, P. Korzhavyi, J. Ågren, B. Patzak, Software solutions for ICME. JOM 68(1), 70–76 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Turetta, S. Bruschi, A. Ghiotti, Investigation of 22MnB5 formability in hot stamping operations. J. Mater. Process. Technol. 177(1–3), 396–400 (2006)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Ulrich Prahl
    • 1
  • Mingxuan Lin
    • 1
  • Marc Weikamp
    • 2
  • Claas Hueter
    • 2
  • Diego Schicchi
    • 3
  • Martin Hunkel
    • 3
  • Robert Spatschek
    • 2
  1. 1.Department of Ferrous MetallurgyRWTH Aachen UniversityAachenGermany
  2. 2.Forschungszentrum JuelichJüelichGermany
  3. 3.Stiftung Institut Fuer WerkstofftechnikBremenGermany

Personalised recommendations