Advertisement

The Alignment of Formal, Structured and Unstructured Process Descriptions

  • Josep CarmonaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10258)

Abstract

Nowadays organizations are experimenting a drift on the way processes are managed. On the one hand, formal notations like Petri nets or Business Process Model and Notation (BPMN) enable the unambiguous reasoning and automation of designed processes. This way of eliciting processes by manual design, which stemmed decades ago, will still be an important actor in the future. On the other hand, regulations require organizations to store their process executions in structured representations, so that they are known and can be analyzed. Finally, due to the different nature of stakeholders within an organization (ranging from the most technical members, e.g., developers, to less technical), textual descriptions of processes are also maintained to enable that everyone in the organization understands their processes.

In this paper I will describe techniques for facilitating the interconnection between these three process representations. This requires interdisciplinary research to connect several fields: business process management, formal methods, natural language processing and process mining.

Keywords

Integer Linear Program Textual Description Process Representation Business Process Management Process Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank to the organization of the Petri Nets and ACSD conferences for both the invitation to give a keynote and to write an article in the conference proceedings.

I would like to thank some researchers that collaborate with my group on some of the topics of this paper: Han van der Aa, Andrea Burattin, Thomas Chatain, Boudewijn van Dongen, Henrik Leopold, Hajo A. Reijers and Barbara Weber. Likewise, I would like to thank the local collaborators LLuís Padró, Josep Sànchez-Ferreres, David Sanchez-Charles and Farbod Taymouri.

This work has been partially supported by funds from the Spanish Ministry for Economy and Competitiveness (MINECO), the European Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

References

  1. 1.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation through natural language generation. IEEE Trans. Softw. Eng. 40(8), 818–840 (2014)CrossRefGoogle Scholar
  2. 2.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Ottensooser, A., Fekete, A.D.: Comparing readability of graphical and sentential process design notations: data analysis report. University of Sydney, School of Information Technologies (2010)Google Scholar
  4. 4.
    Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making sense of business process descriptions: an experimental comparison of graphical and textual notations. J. Syst. Softw. 85(3), 596–606 (2012)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  6. 6.
    van der Aa, H., Leopold, H., Mannhardt, F., Reijers, H.A.: On the fragmentation of process information: challenges, solutions, and outlook. In: Proceedings of Enterprise, Business-Process and Information Systems Modeling - 16th International Conference, BPMDS 2015, 20th International Conference, EMMSAD 2015, Held at CAiSE 2015, Stockholm, Sweden, 8–9 June 2015, pp. 3–18 (2015)Google Scholar
  7. 7.
    OMG: Business process model and notation (BPMN) version 2.0 (2011)Google Scholar
  8. 8.
    Scheer, A.W.: ARIS-Business Process Modeling. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–574 (1989)CrossRefGoogle Scholar
  10. 10.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. Inf. Syst. 30(4), 245–275 (2005)CrossRefGoogle Scholar
  11. 11.
    Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Longman, Boston (2000)Google Scholar
  12. 12.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21640-4_36 CrossRefGoogle Scholar
  13. 13.
    Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische Universiteit Eindhoven (2014)Google Scholar
  14. 14.
    Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Diagnosing behavioral differences between business process models: an approach based on event structures. Inf. Syst. 56, 304–325 (2016)CrossRefGoogle Scholar
  15. 15.
    van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and observed behavior: a compromise between complexity and quality. In: Advanced Information Systems Engineering - 29th International Conference, CAiSE 2017, Essen, Germany, 12–16 June 2017, Proceedings (2017, in press)Google Scholar
  16. 16.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  17. 17.
    Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016). doi: 10.1007/978-3-319-45348-4_12 CrossRefGoogle Scholar
  18. 18.
    Verbeek, H.M.W., van der Aalst, W.M.P.: Merging alignments for decomposed replay. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 219–239. Springer, Cham (2016). doi: 10.1007/978-3-319-39086-4_14 CrossRefGoogle Scholar
  19. 19.
    van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between process models and textual descriptions. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 90–105. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_6 CrossRefGoogle Scholar
  20. 20.
    van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to process models - the automatic detection of inconsistencies. Inf. Syst. 64, 447–460 (2016)Google Scholar
  21. 21.
    Sànchez-Ferreres, J., Carmona, J., Padró, L.: Aligning textual and graphical descriptions of processes through ILP techniques. In: Advanced Information Systems Engineering - 29th International Conference, CAiSE 2017, Essen, Germany, 12–16 June 2017, Proceedings (2017, in press)Google Scholar
  22. 22.
    UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M., Pustejovsky, J.: Semeval-2013 task 1: Tempeval-3: evaluating time expressions, events, and temporal relations. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), vol. 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, Association for Computational Linguistics, pp. 1–9, June 2013Google Scholar
  23. 23.
    Mirza, P.: Extracting temporal and causal relations between events. Ph.D. thesis, International Doctorate School in Information and Communication Technologies, University of Trento (2016)Google Scholar
  24. 24.
    Becker, M., Laue, R.: A comparative survey of business process similarity measures. Comput. Ind. 63(2), 148–167 (2012)CrossRefGoogle Scholar
  25. 25.
    Rosa, M.L., Dumas, M., Ekanayake, C.C., García-Bañuelos, L., Recker, J., ter Hofstede, A.H.M.: Detecting approximate clones in business process model repositories. Inf. Syst. 49, 102–125 (2015)CrossRefGoogle Scholar
  26. 26.
    van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., Rosa, M.: Log delta analysis: interpretable differencing of business process event logs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 386–405. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_26 CrossRefGoogle Scholar
  27. 27.
    Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the Seventh SIAM International Conference on Data Mining, 26–28 April 2007, Minneapolis, Minnesota, USA, pp. 443–448 (2007)Google Scholar
  28. 28.
    Maaradji, A., Dumas, M., Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_27 CrossRefGoogle Scholar
  29. 29.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 6–12 July 2002, Philadelphia, PA, USA, pp. 311–318 (2002)Google Scholar
  30. 30.
    Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Proceedings of the ACL-2004 Workshop. Association for Computational Linguistics, pp. 74–81 (2004)Google Scholar
  31. 31.
    Negri, M., Marchetti, A., Mehdad, Y., Bentivogli, L., Giampiccolo, D.: Semeval-2012 task 8: cross-lingual textual entailment for content synchronization. In: Proceedings of *SEM 2012 (2012)Google Scholar
  32. 32.
    Agirre, E., Banea, C., Cardie, C., Cer, D.M., Diab, M.T., Gonzalez-Agirre, A., Guo, W., Lopez-Gazpio, I., Maritxalar, M., Mihalcea, R., Rigau, G., Uria, L., Wiebe, J.: Semeval-2015 task 2: semantic textual similarity, English, Spanish and pilot on interpretability. In: Proceedings of the 9th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2015, Denver, Colorado, USA, 4–5 June 2015, pp. 252–263 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations