Continental Shelf Landforms

  • Ruth DuránEmail author
  • Jorge Guillén
Part of the Springer Geology book series (SPRINGERGEOL)


Continental shelves comprise the zone adjacent to the continents, extending from the infralittoral to a marked change in slope known as the shelf break. The shelf break is located at a variable depth from 20 to 550 m, with a global average depth of 140 m. They develop in passive and active margins and can be dominated by different processes, which include tides, waves and currents. The present day geomorphology of the continental shelf comprises a wide variety of modern and relict features as a result of different controlling factors—geological structure, sea-level change, and sediment delivery and dispersal systems—acting at varying time scales. This chapter illustrates the most common landforms observed in siliciclastic continental shelves, with special attention to the processes that generate them. Landforms include consolidated bottoms, erosive morphologies, prograding landforms, bedforms, gas-related morphologies and anthropogenic features.


Continental Shelf Morphology Bedforms Prodeltas Seafloor Terrigenous Sediment Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is a contribution to the FORMED (CGL2012-33989) and ABIDES (CTM2015-65142-R) projects funded by the Spanish Ministry of Economy and Competitiveness. Our sincere appreciation goes to Marta Ribó for providing seafloor images.


  1. Allen JR (1982) Sedimentary structures: their character and physical basis. Development in Sedimentology, vol 1. Elsevier, OxfordGoogle Scholar
  2. Amos CL, King EL (1984) Bedforms of the Canadian eastern seaboard: a comparison with global occurrences. Mar Geol 57:167–208CrossRefGoogle Scholar
  3. Anderson JB (1999) Antarctic marine geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Andresen KJ, Huuse M, Clausen OR (2008) Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea–implications for bottom current activity and fluid migration. Basin Res 20(3):445–466Google Scholar
  5. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Res 60:160–172CrossRefGoogle Scholar
  6. Bailey G, Flemming N (2008) Archaeology of the continental shelf. Quatern Sci Rev 27:2153–2165CrossRefGoogle Scholar
  7. Barrie JV, Conway KW (2014) Seabed characterization for the development of marine renewable energy on the Pacific margin of Canada. Cont Shelf Res 83:45–52CrossRefGoogle Scholar
  8. Bassetti M, Jouet G, Dufois F et al (2006) Sand bodies at the shelf edge in the Gulf of Lions (Western Mediterranean): deglacial history and modern processes. Marine Geol 234:93–109CrossRefGoogle Scholar
  9. Batchelor CL, Dowdeswell JA, Ottesen D (2018) Submarine Glacial Landforms. In: Micallef A, Krastel S, Savini A (eds) Submarine Geomorphology, Springer International PublishingGoogle Scholar
  10. Belderson RH, Johnson MA, Kenyon NH (1982) Bedforms. In: Stride AH (ed) Offshore tidal sands processes and deposits. Chapman and Hall, London, pp 27–57Google Scholar
  11. Berné S, Vagner P, Guichard F et al (2002) Pleistocene forced regressions and tidal sand ridges in the East China Sea. Mar Geol 188:293–315CrossRefGoogle Scholar
  12. Bradley WC, Griggs GB (1976) Form, genesis, and deformation of central California wave-cut platforms. Geol Soc Am Bull 87(3):433Google Scholar
  13. Bricker OP (1971) Beachrock and intertidal cement. In: Bricker OP (ed) Carbonate cements. Johns Hopkins Press, Baltimore, pp 1–13Google Scholar
  14. Burchette TP, Wrigth VP (1992) Carbonate ramp depositional systems. Sed Geol 79:3–57CrossRefGoogle Scholar
  15. Cacchione DA, Grant WD, Drake DE et al (1987) Storm-dominated bottom boundary layer dynamics on the northern California continental shelf: measurements and predictions. J Geophys Res 92:1817–1827CrossRefGoogle Scholar
  16. Calvete D, Falqués A, de Swart HE et al (2011) Modelling the formation of shoreface-connected sand ridges on storm-dominated inner shelves. J Fluid Mech 441:169–193Google Scholar
  17. Chiocci F, Chivas AR (2016) An overview of the continental shelves of the world: their evolution during the last glacio-eustatic cycle. Geol Soc Lond Mem 41:1–5CrossRefGoogle Scholar
  18. Clark CD (1993) Mega-scale glacial lineations and cross-cutting ice flow landforms. Earth Surf Proc Land 18:1–29CrossRefGoogle Scholar
  19. Coco G, Murray B, Green MO (2007) Sorted bed forms as self-organized patterns: 1. Model development. J Geophys Res 112:F03015Google Scholar
  20. Coleman, J (1975) Deltas: processes of deposition and models for exploration (Continuing Education, Champaign, IL)Google Scholar
  21. Cohen KM, Lobo FJ (2013) Continental shelf drowned landscapes: submerged geomorphological and sedimentary record of the youngest cycles. Geomorphology 203:1–5CrossRefGoogle Scholar
  22. Collina-Girard J (2002) Underwater mapping of Late quaternary submerged shorelines in the Western Mediterranean Sea and the Caribbean Sea. Quatern Int 92:63–72CrossRefGoogle Scholar
  23. Correggiari A, Trincardi F, Langone L et al (2001) Styles of failure in late Holocene highstand prodelta wedges on the Adriatic shelf. J Sediment Res 71:218–236CrossRefGoogle Scholar
  24. Dalrymple RW, Hoogendoorn EL (1997) Erosion and deposition on migrating shoreface-attached Ridges, Sable lsland, Eastern Canada. Geosci Can 24:25–35Google Scholar
  25. De Falco G, Budillon F, Conforti A et al (2015) Sorted bedforms over transgressive deposits along the continental shelf of western Sardinia (Mediterranean Sea). Mar Geol 259:75–88CrossRefGoogle Scholar
  26. Dowdeswell JA, Ó Cofaigh C, Taylor J et al (2002) On the architecture of high-latitude continental margins: the influence of ice-sheet and sea-ice processes in the Polar North Atlantic, vol 203. Geological Society, London, Special Publications, pp 33–54Google Scholar
  27. Du Four I, Van Lancker V (2008) Changes of sedimentological patterns and morphological features due to the disposal of dredge spoil and the regeneration after cessation of the disposal activities. Mar Geol 255:15–29CrossRefGoogle Scholar
  28. Duce S, Vila-Concejo A, Hamylton SM et al (2016) A morphometric assessment and classification of coral reef spur and groove morphology. Geomorphology 265:68–83CrossRefGoogle Scholar
  29. Durán R, Canals M, Lastras G et al (2013) Sediment dynamics and post-glacial evolution of the continental shelf around the Blanes submarine canyon head (NW Mediterranean). Prog Oceanogr 118:28–46CrossRefGoogle Scholar
  30. Durán R, Canals M, Sanz JL et al (2014) Morphology and sediment dynamics of the northern Catalan continental shelf northwestern Mediterranean Sea. Geomorphology 204:1–20CrossRefGoogle Scholar
  31. Durán R, Guillén J, Simarro G et al (2015) Sand ridges in the mid–outer shelf as potential sand borrows areas (NW Mediterranean). In: Coastal sediments 2015, World ScientificGoogle Scholar
  32. Durán R, Alonso B, Ercilla G et al (2017a) Dynamics of sorted bedforms on a shallow infralittoral prograding wedge influenced by dredging (El Masnou, NW Mediterranean). In: Guillén J, Acosta J, Chiocci F, Palanques A (eds) Atlas of Mediterranean bedforms, pp 135–141Google Scholar
  33. Durán R, Guillén J, Muñoz A (2017b) Sorted bedforms developed on Sandy deposits derived from small ephemeral steams (Catalan continental shelf). In: Guillén J, Acosta J, Chiocci F, Palanques A (eds) Atlas of Mediterranean bedforms, pp 127–133Google Scholar
  34. Durán R, Guillén J, Rivera J et al (2017c) Subaqueous dunes over sand ridges in the Murcia outer shelf. In: Guillén J, Acosta J, Chiocci F, Palanques A (eds) Atlas of bedforms in the Western Mediterranean, pp 187–192Google Scholar
  35. Dyer KR (1970) Linear erosional furrows in Southampton water. Nature 255:56–58CrossRefGoogle Scholar
  36. Dyer KR, Huntley DA (1989) The origin, classification and modelling of sand banks and ridges. Cont Shelf Res 19:1285–1330CrossRefGoogle Scholar
  37. Elliot T (1986) Deltas. In: Reading HG (ed) Sedimentary environments and facies. Blackwell Scientific Publications, Oxford, pp 113–154Google Scholar
  38. Emery KO (1952) Continental shelf sediments of southern California. Geol Soc Am Bull 63:1005–1108Google Scholar
  39. Emery KO (1968) Relict sediments on continental shelves of world. Geol Soc Am Bull 52:445–464Google Scholar
  40. Emery KO (1980) Continental margins–classification and petroleum prospects. Geol Soc Am Bull 64:297–315Google Scholar
  41. Ercilla G, Estrada F, Casa D et al (2010) The El Masnou infralittoral sedimentary environment (Barcelona province, NW Mediterranean Sea): morphology and Holocene seismic stratigraphy. Scientina Mar 74:179–196CrossRefGoogle Scholar
  42. Ernstsen VB, Noormets R, Winter C et al (2006) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo Marine Lett 26:151–163CrossRefGoogle Scholar
  43. Evans G, Collins BM (1975) The transportation and deposition of suspended sediment over the intertidal flats of the Wash. In: Hails J, Carr A (eds) Nearshore sediment dynamics and sedimentation. Wiley, Chichester, pp 273–306Google Scholar
  44. Evans A, Flemming N, Flatman J (2014) Prehistoric archaeology of the continental shelf. Springer, New YorkCrossRefGoogle Scholar
  45. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  46. Faugères J-C, Gonthier E, Mulder T et al (2002) Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic). Mar Geol 182:279–302CrossRefGoogle Scholar
  47. Flemming BW (1978) Underwater sand dunes along the southeast African continental margin—observations and implications. Mar Geol 26:177–198CrossRefGoogle Scholar
  48. Flemming BW (2000) The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In: Trentesaux A, Garlan T (eds) Mar Sandwave Dyn 23:55–60Google Scholar
  49. Flood RD (1983) Classification of sedimentary furrows and a model for furrow initiation and evolution. Geol Soc Am Bull 94:630–639CrossRefGoogle Scholar
  50. Fonteyne R (2000) Physical impacts of beam trawls on sea bed sediments. In: Kaiser MJ, de Groot SJ (eds) Effects of fishing on non-target species and habitats. Biological, conservation and socio-economic issues. Blackwell Science, Oxford, pp 15–36Google Scholar
  51. Franzetti M, Le Roy P, Delacourt C et al (2013) Giant dune morphologies and dynamics in a deep continental shelf environment: example of the banc du four (Western Brittany, France). Mar Geol 346:17–30CrossRefGoogle Scholar
  52. Galloway WE (1975) Process framework for describing the morphological and stratigraphic evolution of deltaic depositional systems. In: Broussard ML (ed) Deltas. Houston Geological Society, Texas, pp 87–98Google Scholar
  53. Galparsoro I, Borja A, Legorburu I et al (2010) Morphological characteristics of the Basque continental shelf (Bay of Biscay, northern Spain); their implications for Integrated Coastal Zone Management. Geomorphology 118:314–329CrossRefGoogle Scholar
  54. Gao S, Collins MB (2014) Holocene sedimentary systems on continental shelves. Mar Geol 352:268–294CrossRefGoogle Scholar
  55. Gardner JV, Calder BR, Hughes Clarke JE et al (2007) Drowned shelf–edge deltas, barrier islands and related features along the outer continental shelf north of the head of De Soto Canyon, NE Gulf of Mexico. Geomorphology 89:370–390CrossRefGoogle Scholar
  56. Geyer WR, Traykovski P (2001) Modeling of clinoforms created by wave/current supported gravity flows. Carl Friedrichs, Virginia Institute of Marine ScienceGoogle Scholar
  57. Goff JA, Jr Austin, Gulick S et al (2005) Recent and modern marine erosion on the New Jersey outer shelf. Mar Geol 216:275–296CrossRefGoogle Scholar
  58. Guerrero Q, Guillén J, Durán R et al (2017) Contemporary subaqueous dune field development over and abandoned river mouth (Ebro Delta). In: Guillén J, Acosta J, Chiocci F, Palanques A (eds) Atlas of Mediterranean bedforms, pp 89–93Google Scholar
  59. Hanebuth T, Stattegger K, Grootes PM (2000) Rapid Flooding of the Sunda Shelf: a late-glacial sea–level record. Science 288:1033–1035CrossRefGoogle Scholar
  60. Harff J, Bailey GN, Lüth F (2016) Geology and archaeology: submerged landscapes of the continental shelf: an introduction, vol 411. Geological Society London, Special Publications, pp 1–8Google Scholar
  61. Harris PT, Davies PJ (1989) Submerged reefs and terraces on the shelf edge of the Great Barrier Reef, Australia–morphology, occurrence and implications for reef evolution. Coral Reefs 8:87–98CrossRefGoogle Scholar
  62. Harris PT, Macmillan-Lawler M, Rupp J et al (2014) Geomorphology of the oceans. Mar Geol 352:4–24CrossRefGoogle Scholar
  63. Harris MS, Sautter LR, Johnson KL et al (2013) Continental shelf landscapes of the southeastern United States since the last interglacial. Geomorphology 203:6–24CrossRefGoogle Scholar
  64. Harris JM, Whitehouse RJS, Benson T (2010) The time evolution of scour around offshore structures. Marit Eng 163:3–17CrossRefGoogle Scholar
  65. Hernández-Molina FJ, Fernández-Salas LM, Lobo F et al (2000) The infralittoral prograding wedge: a new large-scale progradational sedimentary body in shallow water environments. Geo Mar Lett 20:109–117CrossRefGoogle Scholar
  66. Hovland M, Judd AG (1988) Seabed pockmarks and seepages. Impact on geology, biology and the marine environment. Graham & Trotman Ltd., LondonGoogle Scholar
  67. Hovland M, Heggland R, De Vries MH et al (2010) Unit-pockmarks and their potential significance for predicting fluid flow. Marine Petroleum Geology 27:1190–1199CrossRefGoogle Scholar
  68. Hume TM, Trembanis AC, Hill A et al (2003) Spatially variable, temporally stable, sedimentary facies on an energetic inner shelf. Coastal Sediments’03. ASCE Press, Clearwater Beach, FloridaGoogle Scholar
  69. Inman DL, Nordstrom CE (1971) On the tectonic and morphologic classification of coasts. J Geol 79:1–21CrossRefGoogle Scholar
  70. Jones JB (1992) Environmental impact of trawling on the seabed: a review. NZ J Mar Freshwat Res 26:59–67CrossRefGoogle Scholar
  71. Kelletat D (2006) Beachrock as sea–level indicator? Remarks from a geomorphological point of view. J Coastal Res 22:1555–1564Google Scholar
  72. Kenyon NH (1970) Sand ribbons of European tidal seas. Mar Geol 9:25–39CrossRefGoogle Scholar
  73. Kenyon NH, Cooper B (2005) Sand banks, sand transport and offshore wind farms. Technical report by ABP Marine Environmental Research Ltd. (ABPmer)Google Scholar
  74. King LH, MacLean B (1970) Pockmarks on the Scotian Shelf. Geol Soc Am Bull 81:3141–3148CrossRefGoogle Scholar
  75. Kostylev VE, Todd BJ, Fader GBJ et al (2001) Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar Ecol Prog Ser 219:121–137CrossRefGoogle Scholar
  76. Krost P, Bernhard M, Werner F et al (1990) Otter trawl tracks in Kiel Bay (Western Baltic) mapped by side–scan sonar. Meeresforschung 32:344–353Google Scholar
  77. Le Bot S, Trentesaux A, Garlan T et al (2000) Influence des tempêtes sur la mobilité des dunes tidales dans le détroit du Pas-de-Calais. Oceanol Acta 23:129–141CrossRefGoogle Scholar
  78. Lewis A (2001) Great Barrier Reef Depth and Elevation Model (GBRDEM). Technical Report 33, CRC Reef Research Centre, TownsvilleGoogle Scholar
  79. Li MZ, King EL (2007) Multibeam bathymetric investigations of the morphology of sand ridges and associated bedforms and their relation to storm processes, Sable Island Bank, Scotian Shelf. Mar Geol 243:200–228CrossRefGoogle Scholar
  80. Liquete C, Canals M, Lastras G et al (2007) Long–term development and current status of the Barcelona continental shelf: A source–to–sink approach. Cont Shelf Res 27(1779–1800):9Google Scholar
  81. Liu Z, Berné S, Saitoc Y et al (2007) Internal architecture and mobility of tidal sand ridges in the East China Sea. Cont Shelf Res 27:1820–1834CrossRefGoogle Scholar
  82. Lo Iacono C, Guillén J (2008) Environmental conditions for gravelly and pebbly dunes and sorted bedforms on a moderate-energy inner shelf (Marettimo Island, Italy, western Mediterranean). Cont Shelf Res 28:245–256CrossRefGoogle Scholar
  83. Lo Iacono C, Guillén J, Puig P et al (2010) Large-scale bedforms along a tideless outer shelf setting in the western Mediterranean. Cont Shelf Res 30:1802–1813CrossRefGoogle Scholar
  84. Lo Iacono C, Savini A, Basso D (2018) Cold-water carbonate bioconstructions. In: Micallef A, Krastel S, Savini A (eds) Submarine Geomorphology, Springer International PublishingGoogle Scholar
  85. Lobo FJ, Ridente D (2014) Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: An overview. Mar Geol 352:215–247CrossRefGoogle Scholar
  86. Lonsdale PF, Hollister C (1979) A near–bottom traverse of Rockall Trough: hydrographic and geologic inferences. Oceanol Acta 2:91–105Google Scholar
  87. Martinez–Martos M, Galindo-Zaldivar J, Lobo FJ et al (2016) Buried marine–cut terraces and submerged marine–built terraces: the Carchuna-Calahonda coastal area (southeast Iberian Peninsula). Geomorphology 264:29–40CrossRefGoogle Scholar
  88. McBride RA, Moslow TF (1991) Origin, evolution, and distribution of shoreface sand ridges, Atlantic inner shelf, U.S.A. Mar Geol 97:57–85CrossRefGoogle Scholar
  89. McLean S (1981) The role of non–uniform roughness in the formation of sand ribbons. Mar Geol 42:49–74CrossRefGoogle Scholar
  90. Micallef A, Foglini F, Le Bas T et al (2013) The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to Quaternary environmental change. Mar Geol 335:129–147CrossRefGoogle Scholar
  91. Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21CrossRefGoogle Scholar
  92. Mulder T, Syvitski JPM (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J Geol 103:285–299CrossRefGoogle Scholar
  93. Murray AB, Thieler ER (2004) A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and “rippled scour depressions”. Cont Shelf Res 24:295–315CrossRefGoogle Scholar
  94. Nittrouer CA, Wright LD (1994) Transport of particles across continental shelves. Rev Geophys 32:85–113CrossRefGoogle Scholar
  95. Nnafie A, De Swart HE, Calvete D et al (2014) Effects of sea-level rise on the formation and drowning of shoreface-connected sand ridges, a model study. Cont Shelf Res 80:32–48CrossRefGoogle Scholar
  96. Ottesen D, Dowdeswell JA (2006) Assemblages of submarine landforms produced by tidewater glaciers in Svalbard. J Geophys Res 111:F01016CrossRefGoogle Scholar
  97. Palanques A, Guillén J, Puig P (2001) Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol Oceanogr 46:1100–1110CrossRefGoogle Scholar
  98. Palanques A, Puig P, Guillén J et al (2014) Effects of bottom trawling on the Ebro continental shelf sedimentary system (NW Mediterranean). Cont Shelf Res 72:83–98CrossRefGoogle Scholar
  99. Pickrill RA (1983) Wave–built shelves on some low–energy coasts. Mar Geol 51:193–216CrossRefGoogle Scholar
  100. Pirazzoli PA (2005) Marine terraces. In: Schwartz M (ed) Encyclopedia of coastal science. Springer, BerlinGoogle Scholar
  101. Potter PE (1967) Sand bodies and sedimentary environments; a review. Geol Soc Am Bull 51:337–365Google Scholar
  102. Puig P, Ogston AS, Guillén J et al (2007) Sediment transport processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea). Cont Shelf Res 27:452–474CrossRefGoogle Scholar
  103. Puig P, Canals M, Company JB et al (2012) Ploughing the deep sea floor. Nature 489:286–289CrossRefGoogle Scholar
  104. Ramsay PJ, Cooper JAG (2002) Late quaternary sea-level change in South Africa. Quatern Res 57:82–90CrossRefGoogle Scholar
  105. Ribó M, Puig P, Muñoz A et al (2016) Morphobathymetric analysis of the large fine–grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean). Geomorphology 253:22–37CrossRefGoogle Scholar
  106. Russel RJ (1963) Beachrock. J Trop Geogr 17:24–27Google Scholar
  107. Schwab WC, Baldwin E, Denny JF et al (2014) Modification of the Quaternary stratigraphic framework of the inner-continental shelf by Holocene marine transgression: an example offshore of Fire Island, New York. Mar Geol 355:346–360CrossRefGoogle Scholar
  108. Shaw J, Todd BJ, Li MZ et al (2012) Anatomy of the tidal scour system at Minas Passage, Bay of Fundy, Canada. Mar Geol 323:123–134CrossRefGoogle Scholar
  109. Shepard FP (1963) Submarine geology, 2nd edn. Harper and Row, New YorkGoogle Scholar
  110. Shepard FP, Moore DG (1955) Central Texas coast sedimentation: characteristics of sedimentary environment, recent history, and diagenesis. Bull AAPG 39:1463–1593Google Scholar
  111. Siddall M, Chappell J, Potter EK (2007) Eustatic sea-level during past interglacials. In: Sirocko F, Claussen M, Goñi MFS, Litt T (eds) The climate of past interglacials developments in quaternary sciences. Elsevier, Amsterdam, pp 75–92CrossRefGoogle Scholar
  112. Simarro G, Guillén J, Puig P et al (2015) Sediment dynamics over sand ridges on a tideless mid–outer continental shelf. Mar Geol 361:25–40CrossRefGoogle Scholar
  113. Snedden JW, Tillman RW, Culver SJ (2011) Genesis and evolution of a mid-shelf, storm-built sand ridge, New Jersey continental shelf, U.S.A. J Sediment Res 81:534–552CrossRefGoogle Scholar
  114. Southard JB, Boguchwal LA (1990) Bed configurations in steady unidirectional water flows, part 2. synthesis of flume data. J Sediment Petrol 60:658–679CrossRefGoogle Scholar
  115. Sternberg RW, Johnson RV II, Cacchione DA et al (1986) An instrument system for monitoring and sampling suspended sediment in the benthic boundary layer. Mar Geol 71:187–199CrossRefGoogle Scholar
  116. Swift DJP, Stanley DJ, Curray JR (1971) Relict sediments on continental shelves: a reconsideration. J Geol 79:322–346CrossRefGoogle Scholar
  117. Swift DJP (1972) Implications of sediment dispersal from bottom current measurements; some specific problems in understanding bottom sediment distribution and dispersal on the continental shelf: a discussion of two papers. In: Swift DJP, Duane DB, Pilkey OH (eds) Shelf sediment transport: process and pattern Dowden. Hutchinson and Ross, Stroudsburg, Pennsylvania, pp 363–371Google Scholar
  118. Syvitski JPM, Morehead MD (1999) Estimating river-sediment discharge to the ocean: application to the Eel Margin, northern California. Mar Geol 154:13–28CrossRefGoogle Scholar
  119. Thompson WC (1961) A genetic classification of continental shelves. Proc Pacific Sci Congr 12:30–39Google Scholar
  120. Trincardi F, Normark WR (1988) Sediment waves on the Tiber prodelta slope: interaction of deltaic sedimentation and currents along the shelf. Geo Mar Lett 8:149–157CrossRefGoogle Scholar
  121. Urgeles R, Cattaneo A, Puig P et al (2011) A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation. Marine Geophys Res 32:49–69CrossRefGoogle Scholar
  122. Werner F, Newton RS (1975) The pattern of large-scale bedforms in the Langeland Belt (Baltic Sea). Mar Geol 19:25–59CrossRefGoogle Scholar
  123. Wheatcroft RA, Stevens AW, Hunt LM et al (2006) The large-scale distribution and internal geometry of the fall 2000 Po river flood deposit: evidence from digital X-radiography. Cont Shelf Res 26:499–516CrossRefGoogle Scholar
  124. Whitehouse RJS (1998) Scour at marine structures: a manual for practical applications. Thomas Telford, LondonCrossRefGoogle Scholar
  125. Whitmeyer SJ, Fitzgerald DM (2008) Episodic dynamics of a sand wave field. Mar Geol 252:24–37CrossRefGoogle Scholar
  126. Wright LD (1985) River deltas. In: Davis AR (ed) Coastal sedimentary environments. Springer, New York, pp 1–76Google Scholar
  127. Wright LD, Thom BG (1977) Coastal depositional landforms: a morphodynamic approach. Prog Phys Geogr 1:412–459CrossRefGoogle Scholar
  128. Wynn RB, Weaver PPE, Ercilla G et al (2000) Sedimentary processes in the Selvage sediment-wave field, NE Atlantic: new insights into the formation of sediment waves by turbidity currents. Sedimentology 47:1181–1197CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias del Mar, CSICBarcelonaSpain

Personalised recommendations