Advertisement

Shallow Coastal Landforms

  • Fantina Madricardo
  • Federica Rizzetto
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Shallow coastal landforms are often highly dynamic environments due to natural and anthropogenic pressure. The action of waves, tidal currents, rivers inputs, sea-level rise, climate, geology and coastal engineering shapes their morphology at different temporal and spatial scales. The recent technological development of the multibeam echosounder, LiDAR and satellite systems now permits the mapping of shallow coastal landforms at very high resolution, even for depths shallower than 10 m, providing improved understanding of these morphological features. In this chapter, we provide a review of the main shallow coastal submarine landforms and of the newest methods to map them and measure their changes over time.

References

  1. Aigner T (1985) Storm depositional systems: dynamic stratigraphy in modern and ancient shallow-marine sequences. Lecture Notes in Earth Sciencs vol 3. Springer, Berlin, HeidelbergGoogle Scholar
  2. Allen JRL (1965) Scour marks in snow. J Sed Petrol 35(2):331–338Google Scholar
  3. Allen JRL (1968a) Flute marks and flute separation. Nature 219:602–604CrossRefGoogle Scholar
  4. Allen JRL (1968b) Current ripples: their relation to patterns of water and sediment motion. Elsevier, New YorkGoogle Scholar
  5. Allen JRL (1971a) Transverse erosional marks of mud and rock: their physical basis and geological significance. Sed Geol 5:167–385CrossRefGoogle Scholar
  6. Allen JRL (1971b) Bed forms due to mass transfer in turbulent flows: a kaleidoscope of phenomena. J Fluid Mech 49(1):49–63CrossRefGoogle Scholar
  7. Allen JRL (1975) Development of flute-mark assemblages, 2. Evolution of trios of defects. Sed Geol 13:1–26CrossRefGoogle Scholar
  8. Allen JRL (1980) Sand waves: a model of origin and internal structure. Sed Geol 26(4):281–328CrossRefGoogle Scholar
  9. Allen JRL (ed) (1982a) Developments in sedimentology, sedimentary structures, their character and physical basis. Vol I. 30A. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  10. Allen JRL (ed) (1982b) Developments in sedimentology, sedimentary structures, their character and physical basis. Vol II. 30B. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  11. Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231CrossRefGoogle Scholar
  12. Amos CL, Li MZ, Chiocci FL et al (2003) Origin of shore-normal channels from the shoreface of Sable Island. Can J Geophys Res 108(C3):3094CrossRefGoogle Scholar
  13. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem-SEPM bedforms and bedding structures. J Sedim Petrol 60:160–172CrossRefGoogle Scholar
  14. Axelsson A (2010) Rapid topographic and bathymetric reconnaissance using airborne LiDAR. In: Proceedings of SPIE—The International Society For Optical Engineering, vol 7835, Toulouse, FranceGoogle Scholar
  15. Barnard PL, Erikson LH, Kvitek RG (2011) Small-scale sediment transport patterns and bedform morphodynamics: new insights from high-resolution multibeam bathymetry. Geo-Mar Lett 31(4):227–236CrossRefGoogle Scholar
  16. Bartholdy J, Ernstsen VB, Flemming BW, Winter C, Bartholomä A, Kroon A (2015) On the formation of current ripples. Sci Rep 5(1)Google Scholar
  17. Belderson RH, Johnson MA, Kenyon NH (1982) Bedforms. In: Stride (ed) Offshore tidal sands, 1st edn. Chapman and Hall, pp 27–57Google Scholar
  18. Berné S, Castaing P, Le Drezen E et al (1993) Morphology, internal structure, and reversal of asymmetry of large sub-tidal dunes in the entrance to Gironde Estuary (France). J Sediment Res 63:780–793Google Scholar
  19. Berthot A, Pattiaratchi C (2006) Mechanisms for the formation of headland-associated linear sandbanks. Cont Shelf Res 26(8):987–1004CrossRefGoogle Scholar
  20. Besio G, Blondeaux P, Brocchini M et al (2004) On the modeling of sand wave migration. J Geophys Res Oceans 109(C4)Google Scholar
  21. Besio G, Blondeaux P, Brocchini M et al (2008) The morphodynamics of tidal sand waves: a model overview. Coast Eng 55(7):657–670CrossRefGoogle Scholar
  22. Best JL (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res Earth 110(F4)Google Scholar
  23. Boggs S (2006) Principles of sedimentology and stratigraphy. Pearson Prentice Hall, Upper Saddle River, NJGoogle Scholar
  24. Brown CJ, Blondel P (2009) Developments in the application of multibeam sonar backscatter for seafloor habitat mapping. Appl Acoust 70(10):1242–1247CrossRefGoogle Scholar
  25. Brown CJ, Smith SJ, Lawton P et al (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92(3):502–520CrossRefGoogle Scholar
  26. Browne GH, Myrow PM (1994) Pot and gutter casts from the Chapel Island Formation, Southeast Newfoundland; discussion and reply. J Sediment Res 64(3a):706–709CrossRefGoogle Scholar
  27. Burkow M, Griebel M (2016) A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle. Comput Fluids 125:1–10CrossRefGoogle Scholar
  28. Cazenave PW, Dix JK, Lambkin DO et al (2013) A method for semi-automated objective quantification of linear bedforms from multi-scale digital elevation models. Earth Surf Proc Land 38(3):221–236CrossRefGoogle Scholar
  29. Coco G, Senechal N, Rejas A et al (2014) Beach response to a sequence of extreme storms. Geomorphology 204:493–501CrossRefGoogle Scholar
  30. Cossio T, Slatton KC et al (2011) Predicting small target detection performance of low-SNR airborne LiDAR. IEEE J Sel Top Appl Earth Obs Remote Sens 99:1–17Google Scholar
  31. Cowell PJ, Thom BG (1994) Morphodynamics of coastal evolution. Cambridge University Press, CambridgeGoogle Scholar
  32. Dalrymple RW, John Knight R, Lambiase JJ (1978) Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 275 (5676):100–104Google Scholar
  33. Dalrymple RW (1984) The morphology of internal structure of sandwaves in the Bay of Fundy. Sedimentology 31:365–382CrossRefGoogle Scholar
  34. Dalrymple RW, Rhodes RN (1995) Estuarine dunes and barforms, in geomorphology and sedimentology of estuaries. In: Perillo GM (ed) Developments in sedimentology. Elsevier, Amsterdam, pp 359–422Google Scholar
  35. De Falco G, Tonielli R, Di Martino G et al (2010) Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont Shelf Res 30(18):1941–1950CrossRefGoogle Scholar
  36. Dellapenna TM, Kuehl SA, Pitts L (2001) Transient, longitudinal, sedimentary furrows in the York River Subestuary, Chesapeake Bay: furrow evolution and effects on seabed mixing and sediment transport. Estuaries 24(2):215–227CrossRefGoogle Scholar
  37. Diesing M, Green SL, Stephens D et al (2014) Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont Shelf Res 84:107–111CrossRefGoogle Scholar
  38. Duffy GP, Hughes-Clarke JE (2005) Application of spatial cross correlation to detection of migration of submarine sand dunes. J Geophys Res 110:F04S12Google Scholar
  39. Duffy GP, Hughes-Clarke JE (2012) Measurement of bedload transport in a coastal sea using repeat swath bathymetry surveys: assessing bedload formulae using sand dune migration. Sediments, morphology and sedimentary processes on continental shelves: advances in technologies, research and applications. International Association of Sedimentology, WileyGoogle Scholar
  40. Dunbar CO, Rodgers J (1957) Principles of stratigraphy. Wiley, New YorkGoogle Scholar
  41. Dyer KR, Huntley DA (1999) The origin, classification and modelling of sand banks and ridges. Cont Shelf Res 19(10):1285–1330CrossRefGoogle Scholar
  42. Dzulynski S, Sanders JE (1962) Current marks on firm mud bottoms. Trans Connecticut Acad Arts Sci 42:57–96Google Scholar
  43. Dzulynski S, Slaczka A (1958) Directional structures and sedimentation of the Krosno Beds (Carpathian flysch). Ann Soc Geol Pologne 16:205–259Google Scholar
  44. Dzulynski S, Walton EK (1965) Sedimentary features of flysch and greywackes. Developments in sedimentology, vol 7. Elsevier, AmsterdamGoogle Scholar
  45. Erdey-Heydorn MD (2008) An ArcGIS seabed characterization toolbox developed for investigating benthic habitats. Mainer Geodesy 31(4):318–358CrossRefGoogle Scholar
  46. Ernstsen VB, Noormets R, Winter et al (2006) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo Mar Lett 26(3):151–163Google Scholar
  47. Escauriaza C, Sotiropoulos F (2011) Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier. J Geophys Res 116:F03007CrossRefGoogle Scholar
  48. Evans IS (1972) General geomorphometry, derivatives of altitude, and descriptive statistics. Spatial Analysis in Geomorphology, pp 17–90Google Scholar
  49. Fagherazzi S, Sun T (2004) A stochastic model for the formation of channel networks in tidal marshes. Geophys Res Lett 31:L21503CrossRefGoogle Scholar
  50. Feldens P, Diesing M, Schwarzer K et al (2015) Occurrence of flow parallel and flow transverse bedforms in Fehmarn Belt (SW Baltic Sea) related to the local palaeomorphology. Geomorphology 231:53–62CrossRefGoogle Scholar
  51. Fernandez-Diaz JC, Glennie CL, Carter WE et al (2014) Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor. IEEE J Sel Top Appl Earth Obs Remote Sens 99 7(2):623–635Google Scholar
  52. Ferrini VL, Flood RD (2005) A comparison of rippled scour depressions identified with multibeam sonar: evidence of sediment transport in inner shelf environments. Cont Shelf Res 25(16):1979–1995CrossRefGoogle Scholar
  53. Flemming BW (1980) Sand transport and bedform patterns on the continental shelf between Durban and Port Elizabeth (Southeast African continental margin). Sed Geol 26:179–205CrossRefGoogle Scholar
  54. Flemming BW (2000) The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In: Marine sandwave dynamics, international workshop, pp 23–24Google Scholar
  55. Fogarin S (2015) Mappatura dell’ambiente sedimentario della bocca tidale di Chioggia (Laguna di Venezia): backscatter acustico, morfologia del fondale e distribuzione dimensionale, dissertation, University of Ca’ Foscari, VeniceGoogle Scholar
  56. Flood RD (1981) Distribution, morphology, and origin of sedimentary furrows in cohesive sediments, Southampton Water. Sedimentology 28:511–529CrossRefGoogle Scholar
  57. Flood RD (1983) Classification of sedimentary furrows and a model for furrow initiation and evolution. Geol Soc Am Bull 94(5):630–639CrossRefGoogle Scholar
  58. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201CrossRefGoogle Scholar
  59. Foody GM (2004) Thematic map comparison. Photogram Eng Remote Sens 70(5):627–633CrossRefGoogle Scholar
  60. Foody GM (2010) Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens Environ 114(10):2271–2285CrossRefGoogle Scholar
  61. Ford DC, Williams P (1989) Karst geomorphology and hydrology. Unwin Hyman, London, UKCrossRefGoogle Scholar
  62. Fraccascia S, Winter C, Ernstsen VB et al (2016) Residual currents and bedform migration in a natural tidal inlet (Knudedyb, Danish Wadden Sea). Geomorphology 271:74–83CrossRefGoogle Scholar
  63. Giménez R, Planchon O, Silvera N et al (2004) Longitudinal velocity patterns and bed morphology interaction in a rill. Earth Surf Proc Land 29:105–114CrossRefGoogle Scholar
  64. Goodchild MF, Ford DC (1971) Analysis of scallop patterns under controlled conditions. J Geol 79(1):52–62CrossRefGoogle Scholar
  65. Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from flume experiments, 1956–61Google Scholar
  66. Hasan RC, Ierodiaconou D, Laurenson L, Schimel A (2014) Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping. Plos one 9(5):e97339Google Scholar
  67. Hughes-Clarke JE, Mayer LA et al (1996) Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Mar Geophys Res 18(6):607–629CrossRefGoogle Scholar
  68. Huthnance JM (1982a) On one mechanism forming linear sandbanks. Estuar Coast Mar Sci 14(1982):19–99Google Scholar
  69. Huthnance JM (1982b) On the formation of sand banks of finite extent. Estuar Coast Mar Sci 15(1982):277–299CrossRefGoogle Scholar
  70. Ierodiaconou D, Monk J, Rattray A et al (2011) Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations. Cont Shelf Res 31(2):S28–S38CrossRefGoogle Scholar
  71. Karcz I (1968) Fluvial obstacle marks from the wadis of the Negev (Southern Israel). J Sediment Res 38:1000–1012Google Scholar
  72. Krejci-Graf J (1932) Definition der Begriffe Marken, Spuren, Fahrten, Bauten, Hieroglyphen und Fucoiden. Senckenbergiana 14:19–39Google Scholar
  73. Kruss A, Madricardo F, Tegowski J et al (2014) A combined GIS-2DFTT multi-parameter analysis of very high resolution bathymetric data: a case study from the Venice Lagoon. In: 2nd International Conference and Exhibition on Underwater Acoustic (UA2014), Rhodes, GreeceGoogle Scholar
  74. Lecours V, Dolan MFJ, Micallef A, Lucieer VL (2016) A review of marine geomorphometry, the quantitative study of the seafloor. Hydrol Earth Syst Sci 20:3207–3244CrossRefGoogle Scholar
  75. Leeder MR (1982) Sedimentology: process and product. Allen & Unwin, LondonCrossRefGoogle Scholar
  76. Lefebvre A, Ernstsen VB, Winter C (2011) Bedform characterization through 2D spectral analysis. J Coastal Res 64:781Google Scholar
  77. Longhitano SG, Mellere D, Steel RJ et al (2012) Tidal depositional systems in the rock record: a review and new insights. Sed Geol 279:2–22CrossRefGoogle Scholar
  78. Lucieer V, Lamarche G (2011) Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand. Cont Shelf Res 31:1236–1247CrossRefGoogle Scholar
  79. Lucieer V, Lucieer A (2009) Fuzzy clustering for seafloor classification. Mar Geol 264(3):230–241CrossRefGoogle Scholar
  80. Lyons AP, Fox WL, Hasiotis T et al (2002) Characterization of the two-dimensional roughness of wave-rippled sea floors using digital photogrammetry. IEEE J Oceanic Eng 27(3):515–524CrossRefGoogle Scholar
  81. Maddux TB, Nelson JM, McLean SR (2003a) Turbulent flow over three-dimensional dunes: 1. Free surface and flow response. J Geophys Res 108(F1)Google Scholar
  82. Maddux TB, McLean SR, Nelson JM (2003b) Turbulent flow over three-dimensional dunes: 2. Fluid and bed stresses. J Geophys Res 108(F1):6010Google Scholar
  83. Madricardo F, Amos CL, De Pascalis F et al (2015) Sediment transport in a tidal inlet: the case of the Lido inlet, Venice Italy. In: Proceedings of ECSA 55: unbounded boundaries and shifting baselines: estuaries and coastal seas in a rapidly changing world, London 2015Google Scholar
  84. Madricardo F, Foglini F, Trincardi F (2016) Processed high-resolution ASCII: ESRI gridded bathymetry data (EM2040 and EM3002) from the Lagoon of Venice collected in 2013. Integr Earth Data Appl (IEDA). http://dx.doi.org/10.1594/IEDA/323605. Accessed 23 Feb 2017
  85. McGonigle C, Collier J (2014) Interlinking backscatter, grain size and benthic community structure. Estuar Coast Shelf Sci 147:123–136CrossRefGoogle Scholar
  86. McLean SR (1981) The role of non-uniform roughness in the formation of sand ribbons. Dev Sedimentol 32:49–74CrossRefGoogle Scholar
  87. Micallef A, Berndt C, Masson DG et al (2007) A technique for the morphological characterization of submarine landscapes as exemplified by debris flows of the Storegga Slide. J Geophys Res 112:F02001Google Scholar
  88. Micallef A, Le Bas TP, Huvenne VA et al (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 39:14–26CrossRefGoogle Scholar
  89. Micallef A, Foglini F, Le Bas et al (2013) The submerged paleolandscape of the Maltese Islands: morphology, evolution and relation to quaternary environmental change. Mar Geol 335:129–147Google Scholar
  90. Montereale Gavazzi GM, Madricardo F, Janowski L et al (2016) Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats—Application to the Venice Lagoon, Italy. Estuar Coast Shelf Sci 170:45–60CrossRefGoogle Scholar
  91. Neill SP, Scourse JD (2009) The formation of headland/island sandbanks. Cont Shelf Res 29(18):2167–2177CrossRefGoogle Scholar
  92. Neuendorf KKE, Mehl JP Jr, Jackson JA (eds) (2005) Glossary of geology, 5th edn. American Geological Institute, AlexandriaGoogle Scholar
  93. Nichols G (2009) Sedimentology and stratigraphy, 2nd edn. Wiley, New YorkGoogle Scholar
  94. Nienhuis JH, Perron JT, Kao JC et al (2014) Wavelength selection and symmetry breaking in orbital wave ripples. J Geophys Res Earth 119(10):2239–2257CrossRefGoogle Scholar
  95. Olariu C, Steel RJ, Dalrymple RW et al (2012) Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sed Geol 279:134–155CrossRefGoogle Scholar
  96. Omidyeganeh M, Piomelli U (2013) Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 2. Flow structures. J Fluid Mech 734:509–534CrossRefGoogle Scholar
  97. Parnum IM, Gavrilov AN (2011) High-frequency multibeam echo-sounder measurements of seafloor backscatter in shallow water: part 1—data acquisition and processing. Underwater Technol 30(1):3–12CrossRefGoogle Scholar
  98. Parsons DR, Best JL, Orfeo O et al (2005) Morphology and flow fields of three‐dimensional dunes, Rio Paraná, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J Geophys Res Earth 110(F4)Google Scholar
  99. Pfenningbauer M, Ullrich A et al. (2011) High resolution hydrographic airborne laser scanner for surveying inland waters and shallow coastal zones. In: Proceedings SPIE 8037:80375Google Scholar
  100. Picard MD, High LR Jr (1973) Sedimentary structures of ephemeral streams. Developments in sedimentology vol 17. Elsevier, AmsterdamGoogle Scholar
  101. Pike RJ, Evans IS, Hengl T (2009) Geomorphometry: a brief guide. Dev Soil Sci 33:3–30Google Scholar
  102. Rattray A, Ierodiaconou D, Monk J et al (2013) Detecting patterns of change in benthic habitats by acoustic remote sensing. Mar Ecol Prog Ser 477:1–3CrossRefGoogle Scholar
  103. Reading HG (ed) (1996) Sedimentary environments: processes, facies and stratigraphy, 3rd edn. Wiley-Blackwell, Oxford, pp 249–272Google Scholar
  104. Reineck HE, Singh IB (eds) (1975) Depositional sedimentary environments with reference to terrigenous clastics. Corrected reprint of the 1st edn. Springer, BerlinGoogle Scholar
  105. Reynaud JY, Dalrymple RW (2012) Shallow-marine tidal deposits. In: Davis S, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 335–370CrossRefGoogle Scholar
  106. Ricci Lucchi F (1970) Sedimentografia. Atlante fotografico delle strutture primarie dei sedimenti, Zanichelli, BolognaGoogle Scholar
  107. Richardson K, Carling PA (2005) A typology of sculpted forms in open bedrock channels. Geol Soc Am Spec Pap 392:108Google Scholar
  108. Rubin DM, Hunter RE (1987) Bedform alignment in directionally varying flows. Science 237(4812):276–278CrossRefGoogle Scholar
  109. Rücklin H (1938) Strömungsmarken im unteren Muschelkalk des Saarlandes. Senckenbergiana 20:94–114Google Scholar
  110. Schimel AC, Ierodiaconou D, Hulands L et al (2015) Accounting for uncertainty in volumes of seabed change measured with repeat multibeam sonar surveys. Cont Shelf Res 111:52–68CrossRefGoogle Scholar
  111. Sengupta S (1966) Studies on orientation and imbrication of pebbles with respect to cross-stratification. J Sedimentol Petrol 36(2):362–369Google Scholar
  112. Skarke A, Trembanis AC (2011) Parametreization of bedform morphology and defect density with fingerprint analysis techniques. Cont Shelf Res 31(16):1688–1700CrossRefGoogle Scholar
  113. Southard JB, Boguchwal LA (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. J Sediment Res 60(5)Google Scholar
  114. Ten Haaf E (1959) Graded beds of the Northern Apenines. Ph.D. dissertation, University of GroningenGoogle Scholar
  115. Várkonyiv P, Hargitai H (2014) Scour marks. Encyclopedia of planetary landforms. Springer Science, Business Media, New YorkGoogle Scholar
  116. van Dijk TA, Kleinhans MG (2005) Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands. J Geophys Res Earth 110(F4)Google Scholar
  117. van Dijk TA, Lindenbergh RC, Egberts PJ (2008) Separating bathymetric data representing multiscale rhythmic bed forms: a geostatistical and spectral method compared. J Geophys Res Earth 113(F4)Google Scholar
  118. van Oyen T, Blondeaux P, van den Eynde D (2013) Sediment sorting along tidal sand waves: a comparison between field observations and theoretical predictions. Cont Shelf Res 63:23–33CrossRefGoogle Scholar
  119. van Rijn LC (1982) Prediction of bed forms, alluvial roughness and sediment transport. Delft Hydraulics S 487–11Google Scholar
  120. Vassoevic NB (1953) On some structures in the flysch (English summary). Tr Lvovsk Geol Obscesto 3:17–85Google Scholar
  121. Venditti JG (2007) Turbulent flow and drag over fixed two and three‐dimensional dunes. J Geophys Res Earth 112(F4)Google Scholar
  122. Voulgaris G, Morin JP (2008) A long-term real time sea bed morphology evolution system in the South Atlantic Bight. In: IEEE/OES 9th working conference on current measurement technology, CMTC 2008, pp 71–79Google Scholar
  123. Whitaker JH McD (1973) ‘Gutter casts’, a new name for scour-and-fill structures: with examples from the Llandoverian of Ringerike and Malmoya, Southern Norway. Nor Geol Tidsskr 53:403–417Google Scholar
  124. Williams JJ, Bell PS, Thorne PD (2003) Field measurements of flow fields and sediment transport above mobile bed forms. J Geophys Res Oceans 108(C4):3109CrossRefGoogle Scholar
  125. Wilson JP (2012) Digital terrain modeling. Geomorphology 137(1):107–121CrossRefGoogle Scholar
  126. Wright LD, Thom BG (1977) Coastal depositional landforms: a morphodynamic approach. Prog Phys Geogr 1(3):412–459CrossRefGoogle Scholar
  127. Wright DJ, Lundblad ER, Larkin EM et al (2005) NOAA Coastal Services Center, ArcGIS Benthic Terrain Modeler, version 1.0. Accessed April 2017Google Scholar
  128. Yalin MS (1977) Mechanics of sediment transport. Elsevier, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.ISMAR-CNRVeneziaItaly

Personalised recommendations