Skip to main content

Mycorrhizal Symbiosis: Ways Underlying Plant–Fungus Interactions

  • Chapter
  • First Online:
Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials

Abstract

Dissimilar and diverse symbiotic mycorrhizal interactions within plants and fungi occur, which is almost ubiquitous and universal, in the broad range of global ecosystems. The entire mycorrhizal communications achieve symbiotic functioning through development of an extensive contact surface area between plant and fungal cells, where exchange of nutrients and signals takes place. The swap of beneficial molecules within the plant and the fungal cytoplasm takes place both through their cell walls and the plasma membranes, having a purposeful chamber, known as symbiotic interface. Amongst all symbiotic interfaces, the arbuscular mycorrhizal (AM) relationship has intricate intracellular interface which gains major consideration since its first portrayal. It is dissimilar in ectomycorrhizae (ECM); here the fungus grows outside and inside the roots cell walls, which are constantly in direct contact and form interface within both the partners. The mycorrhizae are diverse fungi belonging to dissimilar fungal taxa and interact with roots around of 90% plant species and supply important nutrients for their growth. This also hypothesizes the flow of energy-rich composites required for nutrient mobilization and simultaneously transportation of mobilized products back to their host. Traditionally, these have chiefly been considered within pretty precise perspective of their effects on devouring dissolved mineral nutrients by plants. Enormous research work has been done which put emphasis on multifarious outlook of the mycorrhizal association with plant and also with associated microbial communities and ultimately on ecosystem processes. Consequently, the inputs of both partners in mycorrhizal association are starting to be decrypted to understand this knowledge for enhanced and progressive agricultural practices. The foremost aim of this chapter is to understand the prevailed information on mycorrhizal communications and interactions by integrating morphological observations with plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (2001) Exploration types of ectomycorrhizae a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peak into the 21st. Mycol Res 100:769–782

    Article  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular–arbuscular mycorrhizae. Can J Bot 58:371–374

    Article  CAS  Google Scholar 

  • Andrade SAL, Gratao PL, Azevedo RA, Silveira APD, Schiavinato MA (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207

    Article  CAS  Google Scholar 

  • Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allaway WG (1988) Structure and permeability of the fungal sheath in the pisonia mycorrhiza. Protoplasma 147:149–161

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestrini R, Romera C, Puigdomenech P, Bonfante P (1994) Location of a cell wall hydroxyproline-rich glycoprotein, cellulose and β-1,3-glucans in apical and differentiated regions of maize mycorrhizal roots. Planta 195:201–209

    Article  CAS  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    CAS  PubMed  Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bidartondo MI, Redecker D, HijrI I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 26:345–346

    Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Hock B (ed) Mycota, IX fungal associations. Springer, Berlin, pp 45–91

    Chapter  Google Scholar 

  • Bonfante P, Anca I (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Bonfante P, Requena N (2011) Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:451–457

    Article  CAS  PubMed  Google Scholar 

  • Bothe H, Klingner A, Kaldorf M, Schmitz O, Esch H, Hundeshagen B, Kernebeck H (1994) Biochemical approaches to the study of plant-fungal interactions in arbuscular mycorrhizas. Experientia 50:919–925

    Article  CAS  Google Scholar 

  • Brundrett MC, Abbott LK, Jasper DA (1999) Glomalean mycorrhizal fungi from tropical Australia. I: comparison of the effectiveness and specificity of different isolation procedures. Mycorrhiza 8:305–314

    Article  Google Scholar 

  • Bücking H (2011) Ectomycoremediation: an eco-friendly technique for the remediation of polluted sites. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae. Soil biology, vol 25. Springer, Berlin, pp 209–229

    Chapter  Google Scholar 

  • Bücking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of populus tremulax populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21:101–107

    Article  PubMed  Google Scholar 

  • Bücking H, Kuhn AJ, Schröder WH, Heyser W (2002) The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex? J Exp Bot 53:1659–1669

    Article  PubMed  CAS  Google Scholar 

  • Bücking H, Abubaker J, Govindarajulu M, Tala M, Pfeffer PE, Nagahashi G, Lammers P, Shachar-Hill Y (2008) Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of glomus intraradices. New Phytol 180:684–695

    Article  PubMed  CAS  Google Scholar 

  • Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci:107–138. doi:10.5772/52570

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon ZG, Whitbeck JL (2007) The rhizosphere. Elsevier Academic Press, Burlington, p 235

    Google Scholar 

  • Carvalho SM, Cador I, Martins-Lou A (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Article  CAS  PubMed  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Chiariello N, Hickman JC, Mooney MA (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 217:941–943

    Article  CAS  PubMed  Google Scholar 

  • Clapp J, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539–554

    Article  CAS  Google Scholar 

  • Corkidi L, Rincón E (1997) Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. I: mycorrhizal status and inoculum potential along a successional gradient. Mycorrhiza 7:9–15

    Article  Google Scholar 

  • Croll D et al (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature properties and management of volcanic soils. Adv. Agron. 82:393–472

    Google Scholar 

  • Dalpé Y, Diop TA, Plenchette C, Gueye M (2000) Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10:125–129

    Article  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch H, Bothe H (1992) Influence of vesicular–arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.) J Plant Physiol 141:33–39

    Article  Google Scholar 

  • Deshmukh S, Huckelhoven R, Schäfer P, Imani J, Sharma M (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A 103:50–57

    Article  CAS  Google Scholar 

  • Dewbre GR, Harrison JA, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fester T, Strack D, Hause B (2001) Reorganization of tobacco root plastids during arbuscule development. Planta 213:864–868

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extra radial mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Gachomo E, Allen JW, Pfeffer PE, Govindarajulu MD, Douds D, Jin HR, Nagahashi G, Lammers PJ, Shachar-Hill Y, Bücking H (2009) Germinating spores of glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184:399–411

    Article  CAS  PubMed  Google Scholar 

  • Ganry F, Diem HG, Wey J, Dommergues YR (1985) Inoculation with Glomus mosseae improves N2 fixation by field-grown soybeans. Biol Fertil Soils 1:15–23

    Article  Google Scholar 

  • Gaur A, Adholeya A (2002) Arbuscular–mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218

    Article  CAS  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Gicze G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogus D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci U S A 105:4928–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Guadarrama P, Alvarez-Sanchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8:267–270

    Article  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi M, Bonfante P (2009a) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    Article  CAS  PubMed  Google Scholar 

  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009b) A mycorrhizal specific ammonium transporter from Lotus japonicus acquires nitrogen. Plant Physiol 150:74–83

    Article  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hans J (2003) Doctoral thesis, University Halle-Wittenberg, Halle, Germany. Academic Press, London

    Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heap AJ, Newman EL (1980) Links between roots by hyphae of vesiculararbuscular mycorrhizas. New Phytol 85:169–171

    Article  Google Scholar 

  • Helber N, Wippel K, Sauer N, Saarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijiri M, Sanders IR (2004) The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes. Fungal Genet Biol 41:253–261

    Article  CAS  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:161–163

    Article  CAS  Google Scholar 

  • Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795

    Article  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement and its uptake by plants. Aust J Soil Res 35:227–239

    Article  CAS  Google Scholar 

  • Hosny M, Gianinazzi-Pearson V, Dulieu H (1998) Nuclear DNA contents of eleven fungal species in Glomales. Genome 41:422–428

    Article  CAS  Google Scholar 

  • Imhof S (1999) Root morphology, anatomy and mycotrophy of the achlorophyllous Voyria aphylla (Jacq.) Pers. (Gentianaceae). Mycorrhiza 9:33–39

    Article  Google Scholar 

  • Jacquelinet-Jeanmougin J, Gianinazzi-Pearson V, Gianinazzi S (1987) Endomycorrhizas in the gentianaceae. II: ultrastructural aspects of symbiont relationships in Gentiana lutea L. Symbiosis 3:269–286

    Google Scholar 

  • Javot H, Varma Penmetsa R, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joner EJ, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotech Lett 22:1705–1708

    Article  CAS  Google Scholar 

  • Khan AG (1993) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Kӧhler RH, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113:81–89

    Google Scholar 

  • Kramadibrata K, Walker C, Schwarzott D, Schussler A (2000) A new species of Scutellospora a with a coiled germination shield. Ann Bot 86:21–27

    Article  CAS  Google Scholar 

  • Kuhn G, Hijiri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748

    Article  CAS  PubMed  Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biró B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110

    Article  CAS  PubMed  Google Scholar 

  • Lucic E, Fourrey C, Kohler A, Martin F, Chalot M (2008) Agene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Damien Formey D, Niebel A, Martinez EA, Driguez H, Bécard GJ (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Martin NF, Martin F (2010) From galactic archaeology to soil metagenomic surfing on massive data streams. New Phytol 185:343–348

    Article  PubMed  Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological in sights. Curr Opin Plant Biol 12:508–515

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Cairney JWC (2000) Co-evoloution of mycorrhizal symbionts and their hosts to metalcontaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Mohammadi K (2011) Soil, plant and microbe interactions. Lambert Academic Publishing, Germany

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbusular mycorrhizal fungi (zygomycetes): a new order, glomales, two new suborders, glomineae and gigasporineae, and two new families, acaulosporaceae and gigasporaceae, with an amendation of glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant Microb Interact 11:167–176

    Article  CAS  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    Article  CAS  PubMed  Google Scholar 

  • Parrent JL, James TY, Vasaitis R, Taylor AFS (2009) Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol 9:148–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  CAS  PubMed  Google Scholar 

  • Peretto R, Bettini V, Favaron F, Alghisi P, Bonfante P (1995) Polygalacturonase activity and location in arbuscular mycorrhizal roots of Allium porrum L. Mycorrhiza 5:157–163

    Article  CAS  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotropism. Biosystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, Brun A, Pardo TAG, Martin FA (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Switzerland, pp 1–7

    Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  CAS  PubMed  Google Scholar 

  • Redeker D, Kodner R, Graham L (2000) Glomalean fungi from the ordovician. Science 289:1920–1921

    Article  Google Scholar 

  • Regvar M, Gogala N, Zalar P (1996) Effects of jasmonic acid on mycorrhizal Allium sativum. New Phytol 134:703–707

    Article  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rillig MC, Maestre FT, Lamit LJ (2003) Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 35:1257–1260

    Article  CAS  Google Scholar 

  • Salzer P, Hager A (1991) Sucrose utilization of the ectomycorrhizal fungi Amanita muscaria and Hebeloma crustuliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Bot Acta 104:439–445

    Article  CAS  Google Scholar 

  • Salzer P, Hubner B, Sirrenberg A, Hager A (1997) Differential effect of purified spruce chitinases and β-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi. Plant Physiol 114:957–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders FE, Tinker PB, Black RLB, Palmerley SM (1977) The development of endomycorrhial root systems I. Spread of infection and growth-promoting effects with four species of vesicular-arbuscularendophyte. New Phytol 78:257–268

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenck NC, Smith GS (1982) Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol 92:193–201

    Article  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  PubMed  CAS  Google Scholar 

  • Sebastiana M, Figueiredo A, Acioli B, Sousa L, Pessoa F, Balde A, Pais MS (2009) Identification of plant genes involved on the initial contact between ectomycorrhizal symbionts (Castanea sativa-European chestnut and pisolithus tinctorius). Eur J Soil Biol 45:275–282

    Article  CAS  Google Scholar 

  • Selle A, Willmann M, Grunze N, Gessler A, Weiss M, Nehls U (2005) The high-affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytol 168:697–706

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  CAS  PubMed  Google Scholar 

  • Sengupta A, Chaudhuri S (2002a) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Sengupta A, Chaudhuri S (2002b) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza (4):169–174

    Google Scholar 

  • Simon L, Bousquet J, RC L, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Siqueira JO, Saggin-Júnior OJ (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, CA

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    Article  CAS  PubMed  Google Scholar 

  • Tamasloukht MB, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JH, Peterson CA (2005) Ectomycorrhizal impacts on nutrient uptake pathways in woody roots. New Forests 30:203–214

    Article  Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of co-evolutionary selection. Nature 417:735–738

    Article  CAS  PubMed  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FF (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave desert plants. West N Am Nat 62:327–334

    Google Scholar 

  • Vander Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyper accumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  CAS  PubMed  Google Scholar 

  • Willmann A, Weiss M, Nehls U (2007) Ectomycorrhiza, ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in amanita muscaria. Curr Genet 51:71–78

    Article  CAS  PubMed  Google Scholar 

  • Yamato M (2001) Identification of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis Makino (Triuridaceae). Mycorrhiza 11:83–88

    Article  CAS  Google Scholar 

  • Zhao ZW, Xia YM, Qin XZ, Li XW, Cheng LZ, Sha T, Wang GH (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza 11:159–162

    Article  PubMed  Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors are grateful to DBT for partial financial assistance and DST for providing Confocal Microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Javeria, S., Kumar, V., Sharma, P., Prasad, L., Kumar, M., Varma, A. (2017). Mycorrhizal Symbiosis: Ways Underlying Plant–Fungus Interactions. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-57849-1_10

Download citation

Publish with us

Policies and ethics