Advertisement

Multi-purpose Adaptation in the Web of Things

  • Mehdi TerdjimiEmail author
  • Lionel Médini
  • Michael Mrissa
  • Maria Maleshkova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10257)

Abstract

Web of Things applications require advanced solutions to provide adaptation to different purposes from common context models. While such models are application-specific, the adaptation itself is based on questions (i.e. concerns) that are orthogonal to application domains. In this paper, we present a generic solution to provide reusable and multi-purpose context-based adaptation for smart environments. We rely on semantic technologies and reason about contextual information to evaluate, at runtime, the pertinence of each adaptation possibility to adaptation questions covering various concerns. We evaluate our solution against a smart agriculture scenario using the ASAWoO platform, and discuss how to design context models and rules from “classical” information sources (e.g. domain experts, device QoS, user preferences).

Keywords

Web of Things Multi-purpose adaptation Semantic reasoning 

Notes

Acknowledgement

This work is supported by the French ANR (Agence Nationale de la Recherche) under the grant number <ANR-13-INFR-012>.

References

  1. 1.
    Web of Things Architecture, Unofficial Draft: General Description of WoT Servient. https://w3c.github.io/wot/architecture/wot-architecture.html#general-description-of-wot-servient. Accessed 09 Sept 2016
  2. 2.
    Bass, L.: Software Architecture in Practice. Pearson Education India, London (2007)Google Scholar
  3. 3.
    Bernardos, A.M., Tarrio, P., Casar, J.R.: A data fusion framework for context-aware mobile services. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 2008, pp. 606–613. IEEE (2008)Google Scholar
  4. 4.
    Blouin, A., Morin, B., Beaudoux, O., Nain, G., Albers, P., Jézéquel, J.M.: Combining aspect-oriented modeling with property-based reasoning to improve user interface adaptation. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 85–94. ACM (2011)Google Scholar
  5. 5.
    Brézillon, P.: Task-realization models in contextual graphs. In: Dey, A., Kokinov, B., Leake, D., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 55–68. Springer, Heidelberg (2005). doi: 10.1007/11508373_5 CrossRefGoogle Scholar
  6. 6.
    Brézillon, P.: Modeling expert knowledge and reasoning in context. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 18–31. Springer, Cham (2015). doi: 10.1007/978-3-319-25591-0_2 CrossRefGoogle Scholar
  7. 7.
    Ferscha, A., Vogl, S., Beer, W.: Context sensing, aggregation, representation and exploitation in wireless networks. Scalable Comput.: Pract. Exp. 6(2) (2001)Google Scholar
  8. 8.
    Hayes, P., McBride, B.: RDF semantics. W3C Recomm. 10 (2004)Google Scholar
  9. 9.
    Médini, L., Mrissa, M., Terdjimi, M., Khalfi, E.M., Le Sommer, N., Capdepuy, P., Jamont, J.P., Occello, M., Touseau, L.: Building a web of things with avatars. In: Sheng, M., Yongrui Qin, L.Y., Benatallah, B. (eds.) Managing the Web of Things: Linking the Real World to the Web. Morgan Kaufmann, Elsevier (2016). https://hal.archives-ouvertes.fr/hal-01373631, domains (unavailable categories): Internet of Things, Web of ThingsGoogle Scholar
  10. 10.
    Mizouni, R., Matar, M.A., Al Mahmoud, Z., Alzahmi, S., Salah, A.: A framework for context-aware self-adaptive mobile applications SPL. Expert Syst. Appl. 41(16), 7549–7564 (2014)CrossRefGoogle Scholar
  11. 11.
    Mrissa, M., Médini, L., Jamont, J.P., Le Sommer, N., Laplace, J.: An avatar architecture for the web of things. IEEE Internet Comput. 19(2), 30–38 (2015)CrossRefGoogle Scholar
  12. 12.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)CrossRefGoogle Scholar
  13. 13.
    Schaap, B.F., Reidsma, P., Verhagen, J., Wolf, J., van Ittersum, M.K.: Participatory design of farm level adaptation to climate risks in an arable region in the Netherlands. Eur. J. Agron. 48, 30–42 (2013)CrossRefGoogle Scholar
  14. 14.
    Terdjimi, M., Médini, L., Mrissa, M.: HyLAR+: improving hybrid location-agnostic reasoning with incremental rule-based update. In: 25th International World Wide Web Conference Companion WWW 2016, April 2016Google Scholar
  15. 15.
    Terdjimi, M., Médini, L., Mrissa, M., Le Sommer, N.: An avatar-based adaptation workflow for the web of things. In: 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 62–67. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mehdi Terdjimi
    • 1
    Email author
  • Lionel Médini
    • 1
  • Michael Mrissa
    • 2
  • Maria Maleshkova
    • 3
  1. 1.Univ Lyon, LIRIS Université Lyon 1 - CNRS UMR5205VilleurbanneFrance
  2. 2.LIUPPA, Université de Pau et des Pays de l’AdourPau CedexFrance
  3. 3.AIFBKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations