Advertisement

Photogrammetric Meshes and 3D Points Cloud Reconstruction: A Genetic Algorithm Optimization Procedure

  • Vitoantonio Bevilacqua
  • Gianpaolo Francesco Trotta
  • Antonio Brunetti
  • Giuseppe Buonamassa
  • Martino Bruni
  • Giancarlo Delfine
  • Marco Riezzo
  • Michele Amodio
  • Giuseppe Bellantuono
  • Domenico Magaletti
  • Luca Verrino
  • Andrea Guerriero
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 708)

Abstract

Virtual reconstruction of heritage is one of the most interesting and innovative tool for preservation and keeping of historical, architectural and artistic memory of many sites that are in danger of disappearing. Find the best way to present an object in virtual reality is necessary for reasons linked to technology itself. In particular, the rendering of heavy object, in terms of details and meshes, influences the presentation of the whole virtual scene. Different researches have shown the onset of problems such as sickness due to an incorrect construction and representation of virtual scenes. In this paper we propose a 3D points cloud reconstruction method based on an optimization procedure by using genetic algorithm to improve the mesh obtained by low cost acquisition devices. The improved photogrammetric technique could be used to build virtual scenario by inexpensive devices (i.e. smartphone), without the cost and computational complexity of expensive devices.

Keywords

Genetic Algorithm Point Cloud Hausdorff Distance Surface Subdivision Subdivision Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Guttentag, D.A.: Virtual reality: applications and implications for tourism. Tour. Manag. 31(5), 637–651 (2010)CrossRefGoogle Scholar
  2. 2.
    Fritz, F., Susperregui, A., Linaza, M.T.: Enhancing cultural tourism experiences with augmented reality technologies. In: 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST) (2005)Google Scholar
  3. 3.
    Suveg, I., Vosselman, G.: 3D reconstruction of building models. Int. Arch. Photogrammetry Remote Sens. 33(B2; PART 2), 538–545 (2000)Google Scholar
  4. 4.
    Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimedia Tools Appl. 39(3), 441–471 (2008)CrossRefGoogle Scholar
  5. 5.
    Remondino, F., El-Hakim, S.: Image-based 3D modelling: a review. Photogram. Rec. 21(115), 269–291 (2006)CrossRefGoogle Scholar
  6. 6.
    Bevilacqua, V., Ivona, F., Cafarchia, D., Marino, F.: An evolutionary optimization method for parameter search in 3D points cloud reconstruction. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 601–611. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39479-9_70 CrossRefGoogle Scholar
  7. 7.
    Guidi, G., Russo, M., Beraldin, J.A.: Acquisizione 3D e modellazione poligonale. McGraw-Hill, New York (2009)Google Scholar
  8. 8.
    Mikhail, E.M., Bethel, J.S., McGlone, J.C.: Introduction to modern photogrammetry, New York (2001)Google Scholar
  9. 9.
    Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close range photogrammetry: principles, methods and applications. Whittles (2006)Google Scholar
  10. 10.
    Russo, M., Remondino, F.: Laser scanning e fotogrammetria: strumenti e metodi di rilievo tridimensionale per larcheologia. APSAT 1, 133–164 (2012)Google Scholar
  11. 11.
    Hagebeuker, B.: A 3D time of flight camera for object detection (2007)Google Scholar
  12. 12.
    Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.: structure-from-motion photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012)CrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  14. 14.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). doi: 10.1007/3-540-44480-7_21 CrossRefGoogle Scholar
  15. 15.
    Chaikin, G.M.: An algorithm for high-speed curve generation. Comput. Graph. Image Process. 3(4), 346–349 (1974)CrossRefGoogle Scholar
  16. 16.
    Kobbelt, L.: 3-subdivision. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 103–112. ACM Press/Addison-Wesley Publishing Co. (2000)Google Scholar
  17. 17.
    Micchelli, C.A., Prautzsch, H.: Uniform refinement of curves. Linear Algebra Appl. 114, 841–870 (1989)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dyn, N., Levine, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9(2), 160–169 (1990)CrossRefMATHGoogle Scholar
  19. 19.
    Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)CrossRefGoogle Scholar
  20. 20.
    Guennebaud, S.B., Schlick, C.: Least squares subdivision surfaces. Comput. Graph. Forum 29(7), 2021–2028 (2010)CrossRefGoogle Scholar
  21. 21.
    Loop, C.: Smooth subdivision surfaces based on triangles (1987)Google Scholar
  22. 22.
    Habib, A., Warren, J.D.: Edge and vertex insertion for a class of C1 subdivision surfaces. Comput. Aided Geom. Design 16(4), 223–247 (1999)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer Science & Business Media, Heidelberg (2008)MATHGoogle Scholar
  24. 24.
    Friedberg, R.M.: A learning machine: Part I. IBM J. Res. Dev. 2(1), 2–13 (1958)CrossRefGoogle Scholar
  25. 25.
    Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: Part II. IBM J. Res. Dev. 3(3), 282–287 (1959)CrossRefGoogle Scholar
  26. 26.
    Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 1385–1392. ACM (2016)Google Scholar
  27. 27.
    Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2006, pp. 1958–1965. IEEE (2006)Google Scholar
  28. 28.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring errors between surfaces using the hausdorff distance. In: Proceedings of the 2002 IEEE International Conference on Multimedia and Expo, vol. I, pp. 705–708. IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vitoantonio Bevilacqua
    • 1
  • Gianpaolo Francesco Trotta
    • 2
  • Antonio Brunetti
    • 1
  • Giuseppe Buonamassa
    • 3
  • Martino Bruni
    • 1
  • Giancarlo Delfine
    • 1
  • Marco Riezzo
    • 1
  • Michele Amodio
    • 1
  • Giuseppe Bellantuono
    • 1
  • Domenico Magaletti
    • 1
  • Luca Verrino
    • 1
  • Andrea Guerriero
    • 1
  1. 1.Department of Electrical and Information EngineeringPolytechnic University of BariBariItaly
  2. 2.Department of Mechanical and Management EngineeringPolytechnic University of BariBariItaly
  3. 3.Apulia Makers 3D SrlsBariItaly

Personalised recommendations