Advertisement

Verification of Incomplete Designs

  • Bernd BeckerEmail author
  • Christoph Scholl
  • Ralf Wimmer
Chapter

Abstract

We consider the verification of digital systems which are incomplete in the sense that for some modules only their interfaces (i.e., the signals entering and leaving the module) are known, but not their implementations. For such designs, we study realizability (“Is it possible to implement the missing modules such that the complete design has certain properties?”) and validity (“Does a property hold no matter how the missing parts are implemented?”).

Keywords

Verification Incomplete circuits Black boxes OBDDs SAT QBF DQBF 

References

  1. 1.
    A. Biere, Resolve and expand, in International Conference on Theory and Applications of Satisfiability Testing (SAT), Vancouver, BC, Canada (2004)Google Scholar
  2. 2.
    A. Biere, M. Heule, H. van Maaren, T. Walsh (ed.), in Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185 (IOS Press, 2008)Google Scholar
  3. 3.
    R. Bloem, U. Egly, P. Klampfl, R. Könighofer, F. Lonsing, SAT-based methods for circuit synthesis, in International Conference on Formal Methods in Computer Aided Design (FMCAD), Lausanne, Switzerland (IEEE, 2014), pp. 31–34Google Scholar
  4. 4.
    R. Bloem, R. Könighofer, M. Seidl, SAT-based synthesis methods for safety specs, in International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), ed. By K.L. McMillan, X. Rival. LNCS, vol. 8318 (Springer, San Diego, CA, USA, 2014), pp. 1–20Google Scholar
  5. 5.
    A.R. Bradley, SAT-based model checking without unrolling, in International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 6538 (Springer, 2011), pp. 70–87Google Scholar
  6. 6.
    R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. Aided Des. 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  7. 7.
    R.E. Bryant, Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Comput. Surv. 24, 293–318 (1992)CrossRefGoogle Scholar
  8. 8.
    J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model checking: \(10^{20}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    S.A. Cook, The complexity of theorem-proving procedures, in Annual ACM Symposium on Theory of Computing (STOC) (ACM Press, 1971), pp. 151–158Google Scholar
  11. 11.
    N. Eén, A. Mishchenko, R.K. Brayton, Efficient implementation of property directed reachability, in International Conference on Formal Methods in Computer Aided Design (FMCAD) (FMCAD Inc., 2011), pp. 125–134Google Scholar
  12. 12.
    A. Fröhlich, G. Kovásznai, A. Biere, H. Veith, iDQ: Instantiation-based DQBF solving, in International Workshop on Pragmatics of SAT (POS), ed. By D.L. Berre. EPiC Series, vol. 27 (EasyChair, Vienna, Austria, 2014), pp. 103–116Google Scholar
  13. 13.
    K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, B. Becker, Equivalence checking for partial implementations revisited, in Workshop “Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen” (MBMV), ed. By C. Haubelt, D. Timmermann (Universität Rostock, ITMZ, Rostock, Germany, 2013), pp. 61–70Google Scholar
  14. 14.
    K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, B. Becker, Equivalence checking of partial designs using dependency quantified Boolean formulae, in IEEE International Conference on Computer Design (ICCD), Asheville, NC, USA (IEEE Computer Society, 2013), pp. 396–403Google Scholar
  15. 15.
    K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, B. Becker, Solving DQBF through quantifier elimination, in International Conference on Design, Automation and Test in Europe (DATE), Grenoble, France (IEEE, 2015)Google Scholar
  16. 16.
    E. Giunchiglia, P. Marin, M. Narizzano, sQueezeBF: an effective preprocessor for QBFs based on equivalence reasoning, in International Conference on Theory and Applications of Satisfiability Testing (SAT), ed. By O. Strichman, S. Szeider. LNCS, vol. 6175 (Springer, Edinburgh, UK, 2010), pp. 85–98Google Scholar
  17. 17.
    A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, M.S. Hsiao, Testing, verification, and diagnosis in the presence of unknowns, in IEEE VLSI Test Symposium (VTS) (IEEE Computer Society, Montreal, Canada, 2000), pp. 263–270Google Scholar
  18. 18.
    S. Jo, A.M. Gharehbaghi, T. Matsumoto, M. Fujita, Debugging processors with advanced features by reprogramming LUTs on FPGA, in International Conference on Field-Programmable Technology (FPT) (IEEE, Kyoto, Japan, 2013), pp. 50–57Google Scholar
  19. 19.
    S. Jo, T. Matsumoto, M. Fujita, Sat-based automatic rectification and debugging of combinational circuits with LUT insertions. IPSJ Trans. Syst. LSI Des. Methodol. 7, 46–55 (2014)CrossRefGoogle Scholar
  20. 20.
    K.L. McMillan, Symbolic Model Checking (Kluwer Academic Publisher, 1993)Google Scholar
  21. 21.
    A.R. Meyer, L.J. Stockmeyer, Word problems requiring exponential time: preliminary report, in Annual ACM Symposium on Theory of Computing (STOC) (ACM Press, 1973), pp. 1–9Google Scholar
  22. 22.
    C. Miller, S. Kupferschmid, M.D.T. Lewis, B. Becker, Encoding techniques, Craig interpolants and bounded model checking for incomplete designs, in International Conference on Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 6175 (Springer, 2010), pp. 194–208Google Scholar
  23. 23.
    C. Miller, C. Scholl, B. Becker, Proving QBF-hardness in bounded model checking for incomplete designs, in International Workshop on Microprocessor Test and Verification (MTV) (IEEE Computer Society, Austin, TX, USA, 2013)Google Scholar
  24. 24.
    T. Nopper, C. Scholl, Symbolic model checking for incomplete designs with flexible modeling of unknowns. IEEE Trans. Comput. 62(6), 1234–1254 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Peterson, J. Reif, S. Azhar, Lower bounds for multiplayer non-cooperative games of incomplete information. Comput. Math. Appl. 41(7–8), 957–992 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Pnueli, R. Rosner, Distributed systems are hard to synthesize, in IEEE Symposium on Foundations of Computer, Science (1990), pp. 746–757Google Scholar
  27. 27.
    C. Scholl, B. Becker, Checking equivalence for partial implementations, in ACM/IEEE Design Automation Conference (DAC) (ACM Press, Las Vegas, NV, USA, 2001), pp. 238–243Google Scholar
  28. 28.
    A. Smith, A.G. Veneris, M.F. Ali, A. Viglas, Fault diagnosis and logic debugging using boolean satisfiability. IEEE Trans. CAD Integr. Circuits Syst. 24(10), 1606–1621 (2005)CrossRefGoogle Scholar
  29. 29.
    A. Sülflow, G. Fey, R. Drechsler, Using QBF to increase accuracy of SAT-based debugging, in International Symposium on Circuits and Systems (ISCAS) (IEEE, Paris, France, 2010), pp. 641–644Google Scholar
  30. 30.
    G.S. Tseitin, On the complexity of derivation in propositional calculus. Stud. Constr. Math. Math. Logic Part 2, 115–125 (1970)CrossRefGoogle Scholar
  31. 31.
    K. Wimmer, R. Wimmer, C. Scholl, B. Becker, Skolem functions for DQBF, in International Symposium on Automated Technology for Verification and Analysis (ATVA), ed. By C. Artho, A. Legay, D. Peled. LNCS, vol. 9938 (Springer, Chiba, Japan, 2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceAlbert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany

Personalised recommendations