Compositionality, Decompositionality and Refinement in Input/Output Conformance Testing

  • Lars LuthmannEmail author
  • Stephan Mennicke
  • Malte Lochau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10231)


We propose an input/output conformance testing theory utilizing Modal Interface Automata with Input Refusals (IR-MIA) as novel behavioral formalism for both the specification and the implementation under test. A modal refinement relation on IR-MIA allows distinguishing between obligatory and allowed output behaviors, as well as between implicitly underspecified and explicitly forbidden input behaviors. The theory therefore supports positive and negative conformance testing with optimistic and pessimistic environmental assumptions. We further show that the resulting conformance relation on IR-MIA, called modal-irioco, enjoys many desirable properties concerning component-based behaviors. First, modal-irioco is preserved under modal refinement and constitutes a preorder under certain restrictions which can be ensured by a canonical input completion for IR-MIA. Second, under the same restrictions, modal-irioco is compositional with respect to parallel composition of IR-MIA with multi-cast and hiding. Finally, the quotient operator on IR-MIA, as the inverse to parallel composition, facilitates decompositionality in conformance testing to solve the unknown-component problem.


Model-based testing Modal transition systems Input/output conformance Composition and decomposition in testing 


  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998). doi: 10.1007/BFb0055622 CrossRefGoogle Scholar
  2. 2.
    Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12002-2_15 CrossRefGoogle Scholar
  3. 3.
    Beohar, H., Mousavi, M.R.: Input-output conformance testing based on featured transition systems. In: SAC 2014, pp. 1272–1278. ACM, New York (2014)Google Scholar
  4. 4.
    Bourdonov, I.B., Kossatchev, A.S., Kuliamin, V.V.: Formal conformance testing of systems with refused inputs and forbidden actions. In: MBT 2006, pp. 83–96 (2006)Google Scholar
  5. 5.
    Bujtor, F., Fendrich, S., Lüttgen, G., Vogler, W.: Nondeterministic modal interfaces. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 152–163. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46078-8_13 Google Scholar
  6. 6.
    Bujtor, F., Sorokin, L., Vogler, W.: Testing preorders for dMTS: deadlock- and the new deadlock/divergence-testing. In: ACSD 2015, pp. 60–69 (2015)Google Scholar
  7. 7.
    Daca, P., Henzinger, T.A., Krenn, W., Ničković, D.: Compositional specifications for ioco testing. In: ICST 2014, pp. 373–382 (2014)Google Scholar
  8. 8.
    de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC, pp. 109–120. ACM (2001)Google Scholar
  9. 9.
    de Nicola, R.: Extensional equivalences for transition systems. Acta Inf. 24(2), 211–237 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    de Nicola, R., Segala, R.: A process algebraic view of input/output automata. Theor. Comput. Sci. 138(2), 391–423 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gregorio-Rodríguez, C., Llana, L., Martínez-Torres, R.: Input-output conformance simulation (iocos) for model based testing. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 114–129. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38592-6_9 CrossRefGoogle Scholar
  12. 12.
    Heerink, L., Tretmans, J.: Refusal testing for classes of transition systems with inputs and outputs. In: Mizuno, T., Shiratori, N., Higashino, T., Togashi, A. (eds.) Formal Description Techniques and Protocol Specification, Testing and Verification. ITIFIP, pp. 23–39. Springer, Boston, MA (1997). doi: 10.1007/978-0-387-35271-8_2 CrossRefGoogle Scholar
  13. 13.
    Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line theories. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71316-6_6 CrossRefGoogle Scholar
  14. 14.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS 1988, pp. 203–210 (1988)Google Scholar
  15. 15.
    Lochau, M., Peldszus, S., Kowal, M., Schaefer, I.: Model-based testing. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS, vol. 8483, pp. 310–342. Springer, Cham (2014). doi: 10.1007/978-3-319-07317-0_8 CrossRefGoogle Scholar
  16. 16.
    Lüttgen, G., Vogler, W., Fendrich, S.: Richer interface automata with optimistic and pessimistic compatibility. Acta Inf. 52, 1–32 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Luthmann, L., Mennicke, S., Lochau, M.: Towards an I/O conformance testing theory of software product lines based on modal interface automata. In: FMSPLE 2015, EPTCS, pp. 1–13 (2015)Google Scholar
  18. 18.
    Luthmann, L., Mennicke, S., Lochau, M.: Compositionality, decompositionality and refinement in input/output conformance testing - Technical report (2016).
  19. 19.
    Noroozi, N., Khosravi, R., Mousavi, M.R., Willemse, T.A.C.: Synchronizing asynchronous conformance testing. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 334–349. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24690-6_23 CrossRefGoogle Scholar
  20. 20.
    Noroozi, N., Mousavi, M.R., Willemse, T.A.C.: Decomposability in input output conformance testing. In: MBT 2013, pp. 51–66 (2013)Google Scholar
  21. 21.
    Phillips, I.: Refusal testing. Theor. Comput. Sci. 50(3), 241–284 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A modal interface theory for component-based design. Fund. Inform. 108, 119–149 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Rensink, A., Vogler, W.: Fair testing. Inform. Comp. 205(2), 125–198 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence (1996)Google Scholar
  25. 25.
    Vaandrager, F.W.: On the relationship between process algebra and input/output automata. In: LICS 1991, pp. 387–398, July 1991Google Scholar
  26. 26.
    Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24617-6_7 CrossRefGoogle Scholar
  27. 27.
    Veanes, M., Bjorner, N.: Alternating simulation and IOCO. STTT 14(4), 387–405 (2012)CrossRefGoogle Scholar
  28. 28.
    Villa, T., Yevtushenko, N., Brayton, R.K., Mishchenko, A., Petrenko, A., Sangiovanni-Vincentelli, A.: The Unknown Component Problem: Theory and Applications. Springer Science & Business Media, New York (2011)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Real-Time Systems LabTU DarmstadtDarmstadtGermany
  2. 2.Institute for Programming and Reactive SystemsTU BraunschweigBraunschweigGermany

Personalised recommendations