On the Complexity of Finding a Potential Community

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

Abstract

An independent 2-clique of a graph is a subset of vertices that is an independent set and such that any two vertices inside have a common neighbor outside. In this paper, we study the complexity of finding an independent 2-clique of maximum size in several graph classes and we compare its complexity with the complexity of maximum independent set. We prove that this problem is NP-hard on apex graphs, APX-hard on line graphs, not \(n^{1/2-\epsilon }\)-approximable on bipartite graphs and not \(n^{1-\epsilon }\)-approximable on split graphs, while it is polynomial-time solvable on graphs of bounded degree and their complements, graphs of bounded treewidth, planar graphs, \((C_3,C_6)\)-free graphs, threshold graphs, interval graphs and cographs.

Keywords

Combinatorial optimization Complexity Algorithm Independent set Inapproximability 

References

  1. 1.
    Alekseev, V.E.: On the local restrictions effect on the complexity of finding the graph independence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13 (1983)Google Scholar
  2. 2.
    Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997). doi:10.1007/3-540-62592-5_80 CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Burlingham, L.S., Corneil, D.G., Lerchs, H.: Complement reducible graphs. Discret. Appl. Math. 3, 163–174 (1981)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Courcelle, B.: The monadic second-order logic of graphs iii: tree-decompositions, minors and complexity issues. RAIRO - Informatique Théorique et Appl. 26, 257–286 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. Congressus Numerantium No. XV, pp. 3–13 (1976)Google Scholar
  8. 8.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. Theoret. Comput. Sci. 1, 237–267 (1976)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: Efficient algorithms for interval graphs and circular-arc graphs. Networks 12(4), 459–467 (1982)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nord. J. Comput. 14, 87–108 (2007)MathSciNetMATHGoogle Scholar
  11. 11.
    Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On syntactic versus computational views of approximability. SIAM J. Comput. 28(1), 164–191 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 169–190 (1950)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)CrossRefGoogle Scholar
  14. 14.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theor. Comput. 3(1), 103–128 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cristina Bazgan
    • 1
    • 4
  • Thomas Pontoizeau
    • 1
  • Zsolt Tuza
    • 2
    • 3
  1. 1.Université Paris-Dauphine, PSL Research University, CNRS, LAMSADEParisFrance
  2. 2.Alfréd Rényi Institute of Mathematics, Hungarian Academy of SciencesBudapestHungary
  3. 3.Department of Computer Science and Systems TechnologyUniversity of PannoniaVeszprémHungary
  4. 4.Institut Universitaire de FranceParisFrance

Personalised recommendations