CIAC 2017: Algorithms and Complexity pp 31-42

# Paths to Trees and Cacti

• Akanksha Agrawal
• Lawqueen Kanesh
• Saket Saurabh
• Prafullkumar Tale
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

## Abstract

For a family of graphs $$\mathcal F$$, the $$\mathcal F$$-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide whether there exists $$F \subseteq E(G)$$ of size at most k such that G/F belongs to $$\mathcal F$$. When $$\mathcal F$$ is the family of paths, trees or cacti, then the corresponding problems are Path Contraction, Tree Contraction and Cactus Contraction, respectively. It is known that Tree Contraction and Cactus Contraction do not admit a polynomial kernel unless NP $$\subseteq$$ coNP/poly, while Path Contraction admits a kernel with $$\mathcal {O}(k)$$ vertices. The starting point of this article are the following natural questions: What is the structure of the family of paths that allows Path Contraction to admit a polynomial kernel? Apart from the size of the solution, what other additional parameters should we consider so that we can design polynomial kernels for these basic contraction problems? With the goal of designing polynomial kernels, we consider the family of trees with bounded number of leaves (note that the family of paths are trees with at most two leaves). In particular, we study Bounded Tree Contraction (Bounded TC). Here, an input is a graph G, integers k and $$\ell$$, and the goal is to decide whether or not, there exists a subset $$F \subseteq E(G)$$ of size at most k such that G/F is a tree with at most $$\ell$$ leaves. We design a kernel for Bounded TC with $$\mathcal {O}(k\ell )$$ vertices and $$\mathcal {O}(k^2+k\ell )$$ edges. Finally, we study Bounded Cactus Contraction (Bounded CC) which takes as input a graph G and integers k and $$\ell$$. The goal is to decide whether there exists a subset $$F \subseteq E(G)$$ of size at most k such that G/F is a cactus graph with at most $$\ell$$ leaf blocks in the corresponding block decomposition. For Bounded CC we design a kernel with $$\mathcal {O}(k^2 + k\ell )$$ vertices and $$\mathcal {O}(k^2 + k\ell )$$ edges. We complement our results by giving kernelization lower bounds for Bounded TC, Bounded OTC and Bounded CC by showing that unless NP $$\subseteq$$ coNP/poly the size of the kernel we obtain is optimal.

### References

1. 1.
Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26(2), 197–208 (1983)
2. 2.
Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for proper interval completion. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 173–184. Springer, Heidelberg (2014). doi: Google Scholar
3. 3.
Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for interval completion. In: SODA, pp. 1116–1131 (2016)Google Scholar
4. 4.
Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)
5. 5.
Cai, L., Guo, C.: Contracting few edges to remove forbidden induced subgraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 97–109. Springer, Cham (2013). doi:
6. 6.
Cao, Y.: Unit interval editing is fixed-parameter tractable. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 306–317. Springer, Heidelberg (2015). doi: Google Scholar
7. 7.
Cao, Y.: Linear recognition of almost interval graphs. In: SODA, pp. 1096–1115 (2016)Google Scholar
8. 8.
Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. In: STACS, pp. 214–225 (2014)Google Scholar
9. 9.
Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms (TALG) 11(3), 21 (2015)
10. 10.
Cygan, M., Fomin, F.V., Kowalik, Ł., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)
11. 11.
12. 12.
Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 424–436. Springer, Heidelberg (2015). doi:
13. 13.
Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of intractability. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 411–423. Springer, Heidelberg (2015). doi:
14. 14.
Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring subexponential parameterized complexity of completion problems. In: STACS, pp. 288–299 (2014)Google Scholar
15. 15.
Fomin, F.V.: Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80(7), 1430–1447 (2014)
16. 16.
Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approximation, kernelization and optimal FPT algorithms. In: FOCS (2012)Google Scholar
17. 17.
Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)
18. 18.
Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameterized algorithms for deletion to split graphs. Algorithmica 71(4), 989–1006 (2015)
19. 19.
Petr, A., van’t Hof, P., Paulusma, D.: Obtaining planarity by contracting few edges. Theoret. Comput. Sci. 476, 38–46 (2013)
20. 20.
Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. Inf. Process. Lett. 113(22–24), 906–912 (2013)
21. 21.
Heggernes, P., van’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. Algorithmica 68(1), 109–132 (2014)
22. 22.
Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. In: FCT, pp. 240–251 (2011)Google Scholar
23. 23.
Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. SIAM J. Discrete Math. 27(4), 2143–2156 (2013)
24. 24.
Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algorithm. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp. 1802–1811 (2014)Google Scholar
25. 25.
Jansen, B.M.P., Pieterse, A.: Sparsification upper and lower bounds for graphs problems and not-all-equal SAT. In: 10th International Symposium on Parameterized and Exact Computation, IPEC, pp. 163–174 (2015)Google Scholar
26. 26.
Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. In Proceedings of the 40th International Colloquium Automata, Languages, and Programming - ICALP , Riga, Latvia, 8–12 July, Part I, pp. 613–624 (2013)Google Scholar
27. 27.
Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small induced subgraphs by contracting edges. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 243–254. Springer, Cham (2013). doi:
28. 28.
Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)
29. 29.
Reed, B.A., Smith, K., Adrian, V.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)
30. 30.
Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-deletion or by edge-contraction. Discrete Appl. Math. 3(2), 151–153 (1981)
31. 31.
Watanabe, T., Ae, T., Nakamura, A.: On the NP-hardness of edge-deletion and-contraction problems. Discrete Appl. Math. 6(1), 63–78 (1983)

© Springer International Publishing AG 2017

## Authors and Affiliations

• Akanksha Agrawal
• 1
• Lawqueen Kanesh
• 2
• Saket Saurabh
• 1
• 2
• Prafullkumar Tale
• 2
1. 1.Department of InformaticsUniversity of BergenBergenNorway
2. 2.The Institute of Mathematical SciencesHBNIChennaiIndia