Paths to Trees and Cacti

  • Akanksha Agrawal
  • Lawqueen Kanesh
  • Saket Saurabh
  • Prafullkumar Tale
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

Abstract

For a family of graphs \(\mathcal F\), the \(\mathcal F\)-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide whether there exists \(F \subseteq E(G)\) of size at most k such that G/F belongs to \(\mathcal F\). When \(\mathcal F\) is the family of paths, trees or cacti, then the corresponding problems are Path Contraction, Tree Contraction and Cactus Contraction, respectively. It is known that Tree Contraction and Cactus Contraction do not admit a polynomial kernel unless NP\(\subseteq \)coNP/poly, while Path Contraction admits a kernel with \(\mathcal {O}(k)\) vertices. The starting point of this article are the following natural questions: What is the structure of the family of paths that allows Path Contraction to admit a polynomial kernel? Apart from the size of the solution, what other additional parameters should we consider so that we can design polynomial kernels for these basic contraction problems? With the goal of designing polynomial kernels, we consider the family of trees with bounded number of leaves (note that the family of paths are trees with at most two leaves). In particular, we study Bounded Tree Contraction (Bounded TC). Here, an input is a graph G, integers k and \(\ell \), and the goal is to decide whether or not, there exists a subset \(F \subseteq E(G)\) of size at most k such that G/F is a tree with at most \(\ell \) leaves. We design a kernel for Bounded TC with \(\mathcal {O}(k\ell )\) vertices and \(\mathcal {O}(k^2+k\ell )\) edges. Finally, we study Bounded Cactus Contraction (Bounded CC) which takes as input a graph G and integers k and \(\ell \). The goal is to decide whether there exists a subset \(F \subseteq E(G)\) of size at most k such that G/F is a cactus graph with at most \(\ell \) leaf blocks in the corresponding block decomposition. For Bounded CC we design a kernel with \(\mathcal {O}(k^2 + k\ell )\) vertices and \(\mathcal {O}(k^2 + k\ell )\) edges. We complement our results by giving kernelization lower bounds for Bounded TC, Bounded OTC and Bounded CC by showing that unless NP\(\subseteq \)coNP/poly the size of the kernel we obtain is optimal.

References

  1. 1.
    Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26(2), 197–208 (1983)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for proper interval completion. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 173–184. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44777-2_15 Google Scholar
  3. 3.
    Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for interval completion. In: SODA, pp. 1116–1131 (2016)Google Scholar
  4. 4.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cai, L., Guo, C.: Contracting few edges to remove forbidden induced subgraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 97–109. Springer, Cham (2013). doi:10.1007/978-3-319-03898-8_10 CrossRefGoogle Scholar
  6. 6.
    Cao, Y.: Unit interval editing is fixed-parameter tractable. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 306–317. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_25 Google Scholar
  7. 7.
    Cao, Y.: Linear recognition of almost interval graphs. In: SODA, pp. 1096–1115 (2016)Google Scholar
  8. 8.
    Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. In: STACS, pp. 214–225 (2014)Google Scholar
  9. 9.
    Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms (TALG) 11(3), 21 (2015)MathSciNetGoogle Scholar
  10. 10.
    Cygan, M., Fomin, F.V., Kowalik, Ł., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)CrossRefMATHGoogle Scholar
  11. 11.
    Diestel, R.: Graph theory. Grad. Texts Math. 101 (2005)Google Scholar
  12. 12.
    Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 424–436. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3_36 CrossRefGoogle Scholar
  13. 13.
    Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of intractability. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 411–423. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3_35 CrossRefGoogle Scholar
  14. 14.
    Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring subexponential parameterized complexity of completion problems. In: STACS, pp. 288–299 (2014)Google Scholar
  15. 15.
    Fomin, F.V.: Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80(7), 1430–1447 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approximation, kernelization and optimal FPT algorithms. In: FOCS (2012)Google Scholar
  17. 17.
    Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameterized algorithms for deletion to split graphs. Algorithmica 71(4), 989–1006 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Petr, A., van’t Hof, P., Paulusma, D.: Obtaining planarity by contracting few edges. Theoret. Comput. Sci. 476, 38–46 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. Inf. Process. Lett. 113(22–24), 906–912 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Heggernes, P., van’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. Algorithmica 68(1), 109–132 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. In: FCT, pp. 240–251 (2011)Google Scholar
  23. 23.
    Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. SIAM J. Discrete Math. 27(4), 2143–2156 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algorithm. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp. 1802–1811 (2014)Google Scholar
  25. 25.
    Jansen, B.M.P., Pieterse, A.: Sparsification upper and lower bounds for graphs problems and not-all-equal SAT. In: 10th International Symposium on Parameterized and Exact Computation, IPEC, pp. 163–174 (2015)Google Scholar
  26. 26.
    Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. In Proceedings of the 40th International Colloquium Automata, Languages, and Programming - ICALP , Riga, Latvia, 8–12 July, Part I, pp. 613–624 (2013)Google Scholar
  27. 27.
    Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small induced subgraphs by contracting edges. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 243–254. Springer, Cham (2013). doi:10.1007/978-3-319-03898-8_21 CrossRefGoogle Scholar
  28. 28.
    Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Reed, B.A., Smith, K., Adrian, V.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-deletion or by edge-contraction. Discrete Appl. Math. 3(2), 151–153 (1981)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Watanabe, T., Ae, T., Nakamura, A.: On the NP-hardness of edge-deletion and-contraction problems. Discrete Appl. Math. 6(1), 63–78 (1983)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Akanksha Agrawal
    • 1
  • Lawqueen Kanesh
    • 2
  • Saket Saurabh
    • 1
    • 2
  • Prafullkumar Tale
    • 2
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.The Institute of Mathematical SciencesHBNIChennaiIndia

Personalised recommendations