Linear Search with Terrain-Dependent Speeds

  • Jurek Czyzowicz
  • Evangelos Kranakis
  • Danny Krizanc
  • Lata Narayanan
  • Jaroslav Opatrny
  • Sunil Shende
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

Abstract

We revisit the linear search problem where a robot, initially placed at the origin on an infinite line, tries to locate a stationary target placed at an unknown position on the line. Unlike previous studies, in which the robot travels along the line at a constant speed, we consider settings where the robot’s speed can depend on the direction of travel along the line, or on the profile of the terrain, e.g. when the line is inclined, and the robot can accelerate. Our objective is to design search algorithms that achieve good competitive ratios for the time spent by the robot to complete its search versus the time spent by an omniscient robot that knows the location of the target.

We consider several new robot mobility models in which the speed of the robot depends on the terrain. These include (1) different constant speeds for different directions, (2) speed with constant acceleration and/or variability depending on whether a certain segment has already been searched, (3) speed dependent on the incline of the terrain. We provide both upper and lower bounds on the competitive ratios of search algorithms for these models, and in many cases, we derive optimal algorithms for the search time.

Keywords

Search algorithm Zig-zag algorithm Competitive ratio Linear terrain Robot Speed of movement 

References

  1. 1.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  2. 2.
    Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Klasing, R., Kociumaka, T., Pajak, D.: Linear search by a pair of distinct-speed robots. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016). doi:10.1007/978-3-319-48314-6_13 CrossRefGoogle Scholar
  4. 4.
    Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beck, A., Warren, P.: The return of the linear search problem. Israel J. Math. 14(2), 169–183 (1973)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bellman, R.: An optimal search. SIAM Review 5(3), 274–274 (1963)CrossRefGoogle Scholar
  7. 7.
    Benkoski, S., Monticino, M., Weisinger, J.: A survey of the search theory literature. Naval Res. Logist. (NRL) 38(4), 469–494 (1991)CrossRefMATHGoogle Scholar
  8. 8.
    Bose, P., De Carufel, J.-L.: A general framework for searching on a line. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 143–153. Springer, Cham (2016). doi:10.1007/978-3-319-30139-6_12 CrossRefGoogle Scholar
  9. 9.
    Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 205–216. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40450-4_18 CrossRefGoogle Scholar
  10. 10.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22450-8_27 CrossRefGoogle Scholar
  11. 11.
    Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46078-8_14 Google Scholar
  12. 12.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Search on a line with Byzantine robots. In: ISAAC, LIPCS (2016)Google Scholar
  13. 13.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). doi:10.1007/978-3-319-18173-8_10 CrossRefGoogle Scholar
  14. 14.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny. J.: Search on a line with faulty robots. In: PODC, pp. 405–414 (2016)Google Scholar
  15. 15.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). doi:10.1007/978-3-319-19662-6_13 CrossRefGoogle Scholar
  16. 16.
    Czyzowicz, J., Kranakis, E., Narayanan, L., Opatrny, J., Shende, S.: Linear search with terrain-dependent speeds (2017). http://arxiv.org/abs/1701.03047
  17. 17.
    De Carufel, J.-L.: Personal communicationGoogle Scholar
  18. 18.
    Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoret. Comput. Sci. 361(2), 342–355 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 513–522. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Evangelos Kranakis
    • 2
  • Danny Krizanc
    • 3
  • Lata Narayanan
    • 4
  • Jaroslav Opatrny
    • 4
  • Sunil Shende
    • 5
  1. 1.Dép. d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  4. 4.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada
  5. 5.Department of Computer ScienceRutgers UniversityCamdenUSA

Personalised recommendations