Advertisement

Cache Oblivious Minimum Cut

  • Barbara Geissmann
  • Lukas Gianinazzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

Abstract

We show how to compute the minimum cut of a graph cache-efficiently. Let B be the width of a cache line and M be the size of the cache. On a graph with V vertices and E edges, we give a cache oblivious algorithm that incurs \(O(\lceil \frac{E}{B} (\log ^4 E) \log _{M/B} E\rceil )\) cache misses and a simpler one that incurs \(O(\lceil \frac{V^2}{B} \log ^3 V\rceil )\) cache misses.

Keywords

Span Tree Priority Queue External Memory Minimum Path Memory Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Ian Munro, J.: An optimal cache-oblivious priority queue and its application to graph algorithms. SIAM J. Comput. 36(6), 1672–1695 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arge, L., Brodal, G.S., Toma, L.: On external-memory MST, SSSP, and multi-way planar graph separation. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 433–447. Springer, Heidelberg (2000). doi: 10.1007/3-540-44985-X_37 CrossRefGoogle Scholar
  4. 4.
    Bhushan, A., Gopalan, S.: I/O efficient algorithms for the minimum cut problem on unweighted undirected graphs. Theor. Comput. Sci. 575, 33–41 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Blelloch, G.E., Gibbons, P.B., Simhadri, H.V.: Low depth cache-oblivious algorithms. In: Proceedings of the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2010, pp. 189–199. ACM, New York (2010)Google Scholar
  6. 6.
    Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data structures and algorithms for undirected breadth-first search and shortest paths. In: Algorithm Theory - SWAT 2004, Proceedings of the 9th Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, 8–10 July 2004, pp. 480–492 (2004). doi: 10.1007/978-3-540-27810-8_41
  7. 7.
    Brodal, G.S., Fagerberg, R.: On the limits of cache-obliviousness. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 307–315. ACM, New York (2003)Google Scholar
  8. 8.
    Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, 22–24 January 1995, pp. 139–149 (1995)Google Scholar
  9. 9.
    Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. ACM Trans. Algorithms 8(1), 4:1–4:22 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4), 601–640 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kawarabayashi, K., Thorup, M.: Deterministic global minimum cut of a simple graph in near-linear time. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 665–674 (2015)Google Scholar
  13. 13.
    Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, Philadelphia, PA, USA, 1999, pp. 687–694. Society for Industrial and Applied Mathematics (1999)Google Scholar
  14. 14.
    Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Discret. Math. 5(1), 54–66 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Silvestri, F.: On the limits of cache-oblivious matrix transposition. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 233–243. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75336-0_15 CrossRefGoogle Scholar
  17. 17.
    Sleator, D.D., Tarjan R.E.: A data structure for dynamic trees. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, Milwaukee, Wisconsin, USA, 11–13 May 1981, pp. 114–122 (1981)Google Scholar
  18. 18.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations