New Algorithmic Results for Bin Packing and Scheduling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)


In this paper we present an overview about new results for bin packing and related scheduling problems. During the last years we have worked on the design of efficient exact and approximation algorithms for packing and scheduling problems. In order to obtain faster algorithms we studied integer linear programming (ILP) formulations for these problems and proved structural results for optimum solutions of the corresponding ILPs.


  1. 1.
    Alon, N., Azar, Y., Woeginger, G., Yadid, T.: Approximation schemes for scheduling. In: 8th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 493–500 (1997)Google Scholar
  2. 2.
    Alon, N., Azar, Y., Woeginger, G., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1, 55–66 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes for the classical scheduling problem. In: 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 657–668 (2014)Google Scholar
  4. 4.
    Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34, 564–568 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorithmica 39, 43–57 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Goemans, M.X., Rothvoß, T.: Polynomiality for bin packing with a constant number of item types. In: 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 830–839 (2014)Google Scholar
  7. 7.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)CrossRefMATHGoogle Scholar
  8. 8.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–429 (1969)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hayes, A.C., Larman, D.G.: The vertices of the knapsack polytope. Discret. Appl. Math. 6(2), 135–138 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J. Comput. 17, 539–551 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)MATHGoogle Scholar
  13. 13.
    Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a constant number of integral variables. SIAM J. Discret. Math. 24, 457–485 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jansen, K., Klein, K.M., Verschae, J.: Closing the gap for makespan scheduling via sparsification techniques. In: 43rd International Colloquium on Automata, Languages, Programming, (ICALP), pp. 72:1–72:13 (2016). arXiv:1604.07153
  15. 15.
    Jansen, K., Klein, K.M.: About the structure of the integer cone, its application to bin packing. In: 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1571–1581 (2017). arXiv:1604.07286
  16. 16.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Leung, J.Y.-T.: Bin packing with restricted piece sizes. Inf. Process. Lett. 31, 145–149 (1989)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations