Congestion Games with Complementarities

  • Matthias Feldotto
  • Lennart Leder
  • Alexander Skopalik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)


We study a model of selfish resource allocation that seeks to incorporate dependencies among resources as they exist in modern networked environments. Our model is inspired by utility functions with constant elasticity of substitution (CES) which is a well-studied model in economics. We consider congestion games with different aggregation functions. In particular, we study \(L_p\) norms and analyze the existence and complexity of (approximate) pure Nash equilibria. Additionally, we give an almost tight characterization based on monotonicity properties to describe the set of aggregation functions that guarantee the existence of pure Nash equilibria.


Congestion games Aggregation \(L_p\) norms Complementarities Existence of equilibria Approximate pure Nash equilibria 


  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410(17), 1552–1563 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 25:1–25:22 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ackermann, H., Skopalik, A.: Complexity of pure Nash equilibria in player-specific network congestion games. Internet Math. 5(4), 323–342 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arrow, K.J., Chenery, H.B., Minhas, B.S., Solow, R.M.: Capital-labor substitution and economic efficiency. Rev. Econ. Stat. 43(3), 225–250 (1961)CrossRefGoogle Scholar
  5. 5.
    Banner, R., Orda, A.: Bottleneck routing games in communication networks. IEEE J. Sel. Areas Commun. 25(6), 1173–1179 (2007)CrossRefGoogle Scholar
  6. 6.
    Byde, A., Polukarov, M., Jennings, N.R.: Games with congestion-averse utilities. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 220–232. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04645-2_20 CrossRefGoogle Scholar
  7. 7.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Efficient computation of approximate pure Nash equilibria in congestion games. In: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011), pp. 532–541 (2011)Google Scholar
  8. 8.
    Caragiannis, I., Fanelli, A., Gravin, N.: Short sequences of improvement moves lead to approximate equilibria in constraint satisfaction games. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 49–60. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44803-8_5 Google Scholar
  9. 9.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games: existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3(1), 2:1–2:32 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econ. Behav. 71(2), 315–327 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approximate equilibria in congestion games. Algorithmica 61(1), 116–140 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dixit, A.K., Stiglitz, J.E.: Monopolistic competition and optimum product diversity. Am. Econ. Rev. 67(3), 297–308 (1977)Google Scholar
  13. 13.
    Dunkel, J., Schulz, A.S.: On the complexity of pure-strategy Nash equilibria in congestion and local-effect games. Math. Oper. Res. 33(4), 851–868 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing (STOC 2004), pp. 604–612. ACM, New York (2004)Google Scholar
  15. 15.
    Feldotto, M., Gairing, M., Skopalik, A.: Bounding the potential function in congestion games and approximate pure Nash equilibria. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 30–43. Springer, Cham (2014). doi: 10.1007/978-3-319-13129-0_3 Google Scholar
  16. 16.
    Feldotto, M., Leder, L., Skopalik, A.: Congestion games with mixed objectives. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 655–669. Springer, Cham (2016). doi: 10.1007/978-3-319-48749-6_47 CrossRefGoogle Scholar
  17. 17.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theoret. Comput. Sci. 348(2), 226–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hansknecht, C., Klimm, M., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), Dagstuhl, Germany. LIPIcs, vol. 28, pp. 242–257 (2014)Google Scholar
  19. 19.
    Harks, T., Hoefer, M., Klimm, M., Skopalik, A.: Computing pure Nash and strong equilibria in bottleneck congestion games. Math. Program. 141(1), 193–215 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Harks, T., Klimm, M., Möhring, R.H.: Strong Nash equilibria in games with the lexicographical improvement property. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 463–470. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10841-9_43 CrossRefGoogle Scholar
  21. 21.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: a simple class of congestion games. In: AAAI, pp. 489–494. AAAI Press/The MIT Press (2005)Google Scholar
  22. 22.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). doi: 10.1007/3-540-49116-3_38 Google Scholar
  23. 23.
    Kukushkin, N.S.: Rosenthal’s potential and a discrete version of the Debreu-Gorman Theorem. Autom. Remote Control 76(6), 1101–1110 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kukushkin, N.S.: Congestion games revisited. Int. J. Game Theory 36(1), 57–83 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with player-specific constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 633–644. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74456-6_56 CrossRefGoogle Scholar
  26. 26.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13(1), 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. J. ACM 62(5), 32:1–32:42 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer Science & Business Media, Heidelberg (2002)zbMATHGoogle Scholar
  31. 31.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 355–364. ACM, New York (2008)Google Scholar
  32. 32.
    Voice, T., Polukarov, M., Byde, A., Jennings, N.R.: On the impact of strategy and utility structures on congestion-averse games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 600–607. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10841-9_61 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthias Feldotto
    • 1
  • Lennart Leder
    • 1
  • Alexander Skopalik
    • 1
  1. 1.Heinz Nixdorf Institute and Department of Computer SciencePaderborn UniversityPaderbornGermany

Personalised recommendations