Complexity of Single-Swap Heuristics for Metric Facility Location and Related Problems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

Abstract

Metric facility location and K-means are well-known problems of combinatorial optimization. Both admit a fairly simple heuristic called single-swap, which adds, drops or swaps open facilities until it reaches a local optimum. For both problems, it is known that this algorithm produces a solution that is at most a constant factor worse than the respective global optimum. In this paper, we show that single-swap applied to the weighted metric uncapacitated facility location and weighted discrete K-means problem is tightly PLS-complete and hence has exponential worst-case running time.

Notes

Acknowledgments

The author would like to thank Johannes Blömer, Jakob Juhnke and the anonymous reviewers for helpful comments which increased the quality of the paper, and Alexander Skopalik for bringing PLS to his attention.

References

  1. 1.
    Adler, I., Papadimitriou, C., Rubinstein, A.: On simplex pivoting rules and complexity theory. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 13–24. Springer, Cham (2014). doi: 10.1007/978-3-319-07557-0_2 CrossRefGoogle Scholar
  2. 2.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brauer, S.: Complexity of Single-Swap Heuristics for Metric Facility Location and Related Problems (Full Version). Computing Research Repository (2016). arXiv:1612.01752
  4. 4.
    Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS) (2016)Google Scholar
  5. 5.
    Fearnley, J., Savani, R.: The complexity of the simplex method. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pp. 201–208 (2015)Google Scholar
  6. 6.
    Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for k-means in doubling metrics. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS) (2016)Google Scholar
  7. 7.
    Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algorithms 31(1), 228–248 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 731–740 (2002)Google Scholar
  9. 9.
    Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM 48(2), 274–296 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28(2), 89–112 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Monien, B., Dumrauf, D., Tscheuschner, T.: Local search: simple, successful, but sometimes sluggish. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 1–17. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14165-2_1 CrossRefGoogle Scholar
  14. 14.
    Papadimitriou, C.H., Schäffer, A.A., Yannakakis, M.: On the complexity of local search. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990 (1990)Google Scholar
  15. 15.
    Roughgarden, T., Wang, J.: The complexity of the \(k\)-means method. In: 24th European Symposium on Algorithms, ESA 2016 (2016)Google Scholar
  16. 16.
    Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing STOC 1997, pp. 265–274 (1997)Google Scholar
  18. 18.
    Vattani, A.: k-means requires exponentially many iterations even in the plane. Discret. Comput. Geom. 45(4), 596–616 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer SciencePaderborn UniversityPaderbornGermany

Personalised recommendations