Complexity of Single-Swap Heuristics for Metric Facility Location and Related Problems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

Abstract

Metric facility location and K-means are well-known problems of combinatorial optimization. Both admit a fairly simple heuristic called single-swap, which adds, drops or swaps open facilities until it reaches a local optimum. For both problems, it is known that this algorithm produces a solution that is at most a constant factor worse than the respective global optimum. In this paper, we show that single-swap applied to the weighted metric uncapacitated facility location and weighted discrete K-means problem is tightly PLS-complete and hence has exponential worst-case running time.

References

  1. 1.
    Adler, I., Papadimitriou, C., Rubinstein, A.: On simplex pivoting rules and complexity theory. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 13–24. Springer, Cham (2014). doi:10.1007/978-3-319-07557-0_2 CrossRefGoogle Scholar
  2. 2.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brauer, S.: Complexity of Single-Swap Heuristics for Metric Facility Location and Related Problems (Full Version). Computing Research Repository (2016). arXiv:1612.01752
  4. 4.
    Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS) (2016)Google Scholar
  5. 5.
    Fearnley, J., Savani, R.: The complexity of the simplex method. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pp. 201–208 (2015)Google Scholar
  6. 6.
    Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for k-means in doubling metrics. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS) (2016)Google Scholar
  7. 7.
    Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algorithms 31(1), 228–248 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 731–740 (2002)Google Scholar
  9. 9.
    Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM 48(2), 274–296 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28(2), 89–112 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Monien, B., Dumrauf, D., Tscheuschner, T.: Local search: simple, successful, but sometimes sluggish. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 1–17. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2_1 CrossRefGoogle Scholar
  14. 14.
    Papadimitriou, C.H., Schäffer, A.A., Yannakakis, M.: On the complexity of local search. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990 (1990)Google Scholar
  15. 15.
    Roughgarden, T., Wang, J.: The complexity of the \(k\)-means method. In: 24th European Symposium on Algorithms, ESA 2016 (2016)Google Scholar
  16. 16.
    Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing STOC 1997, pp. 265–274 (1997)Google Scholar
  18. 18.
    Vattani, A.: k-means requires exponentially many iterations even in the plane. Discret. Comput. Geom. 45(4), 596–616 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer SciencePaderborn UniversityPaderbornGermany

Personalised recommendations