Mimetic Staggered Discretization of Incompressible Navier–Stokes for Barycentric Dual Mesh

  • René Beltman
  • Martijn J. H. Anthonissen
  • Barry Koren
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 200)


A staggered discretization of the incompressible Navier–Stokes equations is presented for polyhedral non orthogonal nonsmooth meshes admitting a barycentric dual mesh. The discretization is constructed by using concepts of discrete exterior calculus. The method strictly conserves mass, momentum and energy in the absence of viscosity.


Mimetic finite-volume discretizations Barycentric dual mesh 

MSC (2010):

65M08 65N08 76D05 


  1. 1.
    Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Compatible Spatial Discretizations, pp. 89–119. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Brezzi, F., Buffa, A., Manzini, G.: Mimetic scalar products of discrete differential forms. J. Comput. Phys. 257, 1228–1259 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chénier, E., Eymard, R., Gallouët, T., Herbin, R.: An extension of the MAC scheme to locally refined meshes: convergence analysis for the full tensor time-dependent Navier–Stokes equations. Calcolo 52(1), 69–107 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheny, Y., Botella, O.: The LS-stag method: a new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties. J. Comput. Phys. 229, 1043–1076 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hall, C., Cavendish, J., Frey, W.: The dual variable method for solving fluid flow difference equations on Delaunay triangulations. Comput. Fluids 20, 145–164 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lilly, D.K.: On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Mon. Weather Rev. 93, 11–26 (1965)CrossRefGoogle Scholar
  8. 8.
    Mohamed, M.S., Hirani, A.N., Samtaney, R.: Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes. J. Comput. Phys. 312, 175–191 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nicolaides, R.: Flow discretization by complementary volume techniques. In: Proceedings of the 9th AIAA CFD Meeting. AIAA Paper 89-1978 (1989)Google Scholar
  10. 10.
    Perot, B.: Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys. 159, 58–89 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Perot, B., Nallapati, R.: A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows. J. Comput. Phys. 184, 192–214 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Perot, J.B., Vidovic, D., Wesseling, P.: Mimetic reconstruction of vectors. In: Compatible Spatial Discretizations, pp. 173–188. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Tonti, E.: The Mathematical Structure of Classical and Relativistic Physics. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    da Veiga, L.B., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, vol. 11. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • René Beltman
    • 1
  • Martijn J. H. Anthonissen
    • 1
  • Barry Koren
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations