Advertisement

Nonlinear Finite-Volume Scheme for Complex Flow Processes on Corner-Point Grids

  • Martin Schneider
  • Dennis Gläser
  • Bernd Flemisch
  • Rainer Helmig
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 200)

Abstract

The numerical simulation of subsurface processes requires efficient and robust methods due to the large scales and the complex geometries involved. In this article, a nonlinear finite-volume scheme is presented and applied to non-isothermal two-phase two-component flow in porous media. The idea of the scheme and the model used for the simulations are outlined and a comparison to a standard scheme used in industrial codes is made. Large-scale offshore CO\(_2\) storage in the Johansen formation serves as a benchmark problem, where it is demonstrated that the new scheme can handle highly complex corner-point grids and reproduces the physical processes with a higher accuracy than the standard discretization scheme.

Keywords

Finite-volume method Monotone discretization Corner-point grid Challenging grids 

MSC (2010):

65M08 65N08 35Q30 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart.

References

  1. 1.
    Afanasyev, A.A.: Application of the reservoir simulator MUFITS for 3D modelling of CO2 storage in geological formations. Energy Proced. 40, 365–374 (2013)CrossRefGoogle Scholar
  2. 2.
    Agélas, L., Eymard, R., Herbin, R.: A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. Compt. Rendus Math. 347(11), 673–676 (2009)Google Scholar
  3. 3.
    Becker, B., Beck, M., Fetzer, T., Flemisch, B., Grüninger, C., Hommel, J., Jambhekar, V., Kissinger, A., Koch, T., Schneider, M., Schröder, N., Schwenck, N.: Dumux 2.7.0 (2015). doi: 10.5281/zenodo.16722, URL http://dx.doi.org/10.5281/zenodo.16722
  4. 4.
    Blatt, M., Bastian, P.: The Iterative Solver Template Library, pp. 666–675. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., Gersbacher, C., Gräser, C., Gruber, F., Grüninger, C., Kempf, D., Klöfkorn, R., Malkmus, T., Müthing, S., Nolte, M., Piatkowski, M., Sander, O.: The distributed and unified numerics environment, version 2.4. Arch. Numer. Softw. 4(100), 13–29 (2016)Google Scholar
  6. 6.
    Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Naderi Beni, A., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009)Google Scholar
  7. 7.
    Coninck, H., Loos, M., Metz, B., Davidson, O., Meyer, L.: IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change (2005)Google Scholar
  8. 8.
    Danilov, A., Vassilevski, Y.V.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Rus. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Darcis, M.Y.: Coupling models of different complexity for the simulation of CO2 storage in deep saline aquifers. Ph.D. thesis (2013). URL http://elib.uni-stuttgart.de/opus/volltexte/2013/8141
  10. 10.
    Eigestad, G.T., Dahle, H.K., Hellevang, B., Riis, F., Johansen, W.T., Øian, E.: Geological modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. 13(4), 435–450 (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Scient. Comput. 37(1), A420–A438 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Intergovernmental panel on climate change: climate change 2014: mitigation of climate change, vol. 3, Cambridge University Press (2015)Google Scholar
  13. 13.
    Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)CrossRefGoogle Scholar
  14. 14.
    Schneider, M., Flemisch, B., Helmig, R.: Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media. Int. J. Numer. Methods Fluids (2016)Google Scholar
  15. 15.
    Schneider, M., Flemisch, B., Helmig, R., Terekhov, K., Tchelepi, H.: Monotone nonlinear finite-volume method for challenging grids (2017). (SimTech preprint). URL http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1507
  16. 16.
    Somerton, W., El-Shaarani, A., Mobarak, S.: High temperature behavior of rocks associated with geothermal type reservoirs. In: SPE California Regional Meeting. Society of Petroleum Engineers (1974)Google Scholar
  17. 17.
    Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227(12), 6288–6312 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Martin Schneider
    • 1
  • Dennis Gläser
    • 1
  • Bernd Flemisch
    • 1
  • Rainer Helmig
    • 1
  1. 1.Institute for Modelling Hydraulic and Environmental Systems (IWS)University of StuttgartStuttgartGermany

Personalised recommendations