Advertisement

Hybrid Finite-Volume/Finite-Element Schemes for p(x)-Laplace Thermistor Models

  • Jürgen Fuhrmann
  • Annegret Glitzky
  • Matthias Liero
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 200)

Abstract

We introduce an empirical PDE model for the electrothermal description of organic semiconductor devices by means of current and heat flow. The current flow equation is of p(x)-Laplace type, where the piecewise constant exponent p(x) takes the non-Ohmic behavior of the organic layers into account. Moreover, the electrical conductivity contains an Arrhenius-type temperature law. We present a hybrid finite-volume/finite-element discretization scheme for the coupled system, discuss a favorite discretization of the p(x)-Laplacian at hetero interfaces, and explain how path following methods are applied to simulate S-shaped current-voltage relations resulting from the interplay of self-heating and heat flow.

Keywords

Finite volume scheme p(x)-Laplace thermistor model Path following 

MSC (2010):

65M08 35J92 35G60 35Q79 80M12 80A20 

Notes

Acknowledgements

A.G. and M.L. gratefully acknowledge the funding received via Research Center Matheon supported by ECMath in project D-SE2.

References

  1. 1.
    Bloch, J., Fuhrmann, J., Gärtner, K.: Bifurcation analysis of nonlinear systems of PDE’s. (unpublished report)Google Scholar
  2. 2.
    Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28(3), 469–495 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bulíček, M., Glitzky, A., Liero, M.: Systems describing electrothermal effects with \(p(x)\)-Laplace like structure for discontinuous variable exponents. SIAM J. Math. Anal. 48, 3496–3514 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bulíček, M., Glitzky, A., Liero, M.: Thermistor systems of \(p(x)\)-Laplace-type with discontinuous exponents via entropy solutions. Discrete Contin. Dyn. Syst. Ser. S 10(4), 697–713 (2017)Google Scholar
  5. 5.
    Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. 30, 1009–1043 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fischer, A., Koprucki, T., Gärtner, K., Brückner, J., Lüssem, B., Leo, K., Glitzky, A., Scholz, R.: Feel the heat: nonlinear electrothermal feedback in organic LEDs. Adv. Funct. Mater. 24, 3367–3374 (2014)CrossRefGoogle Scholar
  7. 7.
    Fischer, A., Pahner, P., Lüssem, B., Leo, K., Scholz, R., Koprucki, T., Gärtner, K., Glitzky, A.: Self-heating, bistability, and thermal switching in organic semiconductors. Phys. Rev. Lett. 110, 126,601/1–126,601/5 (2013)Google Scholar
  8. 8.
    Glitzky, A., Liero, M.: Analysis of \(p(x)\)-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices. Nonlinear Anal. Real World Appl. 34, 536–562 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liero, M., Koprucki, T., Fischer, A., Scholz, R., Glitzky, A.: \(p\)-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices. Z. Angew. Math. Phys. 66, 2957–2977 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50(1), 38–53 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jürgen Fuhrmann
    • 1
  • Annegret Glitzky
    • 1
  • Matthias Liero
    • 1
  1. 1.Weierstrass InstituteBerlinGermany

Personalised recommendations