On the Conditions for Coupling Free Flow and Porous-Medium Flow in a Finite Volume Framework

  • Thomas Fetzer
  • Christoph Grüninger
  • Bernd Flemisch
  • Rainer Helmig
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 200)


This article presents model concepts for the coupling of one-phase compositional non-isothermal Navier-Stokes flow to two-phase compositional non-isothermal Darcy flow in a finite volume framework. The focus of the presented coupling conditions is on defining appropriate conditions for momentum transfer without introducing additional degrees of freedom at the interface. Four different methods are presented and compared with the help of numerical simulations of flow around an evaporating porous medium. The results show that simply assigning the porous medium gas pressure as the gas pressure at the interface (CM1) leads to high, non-physical velocities in cells at the corner of the porous medium. This effect can be weakened by recalculating the interface gas pressure with the help of the total mass balance and additional assumptions concerning the state at the interface (CM2). Allowing only momentum transfer between the gas phases (CM3) leads to an increase of the resistance against inflow, if the porous medium is filled with water. However, in order to minimize the assumptions made, an additional system of equations can be introduced and solved to recalculate the pressure at the interface (CM4). This method is computationally more expensive but shows the expected physical behavior regarding the velocity profile.


Free flow Porous-medium flow Coupling 


  1. 1.
    Baber, K., Mosthaf, K., Flemisch, B., Helmig, R., Müthing, S., Wohlmuth, B.: Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA J. Appl. Math. 77(6) (2012).
  2. 2.
    Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1) (1967).
  3. 3.
    Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., Gersbacher, C., Gräser, C., Gruber, F., Grüninger, C., Kempf, D., Klöfkorn, R., Malkmus, T., Müthing, S., Nolte, M., Piatkowski, M., Sander, O.: The distributed and unified numerics environment, version 2.4. Arch. Numer. Softw. 4(100) (2016).
  4. 4.
    Dahmen, W., Gotzen, T., Müller, S., Rom, M.: Numerical simulation of transpiration cooling through porous material. Int. J. Numer. Methods Fluids 76(6) (2014).
  5. 5.
    Defraeye, T.: Advanced computational modelling for drying processes. Rev. Appl. Energy 131 (2014).
  6. 6.
    Discacciati, M., Gervasio, P., Giacomini, A., Quarteroni, A.: The interface control domain decomposition method for Stokes–Darcy coupling. SIAM J. Numer. Anal. 54(2) (2016).
  7. 7.
    Fetzer, T., Smits, K.M., Helmig, R.: Effect of turbulence and roughness on coupled porous-medium/free-flow exchange processes. Trans. Porous Med. 114(2) (2016).
  8. 8.
    Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMuX: DUNE for multi-phase, component, scale, physics, ... flow and transport in Porous Media. Adv. Water Resour. 34(9) (2011).
  9. 9.
    Grüninger, C., Fetzer, T., Flemisch, B., Helmig, R.: Coupling DuMuX and DUNE-PDELab to investigate evaporation at the interface between Darcy and Navier-Stokes flow. Arch. Numer. Softw. (2016). (submitted)Google Scholar
  10. 10.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12) (1965).
  11. 11.
    Hommel, J., Ackermann, S., Beck, M., Becker, B., Class, H., Fetzer, T., Flemisch, B., Gläser, D., Grüninger, C., Heck, K., Kissinger, A., Koch, T., Schneider, M., Seitz, G., Weishaupt, K.: DuMuX 2.10.0 (2016).
  12. 12.
    Iliev, O., Laptev, V.: On numerical simulation of flow through oil filters. Comput. Vis. Sci. 6(2) (2004).
  13. 13.
    Jambhekar, V.A., Helmig, R., Schröder, N., Shokri, N.: Free-flow–Porous-Media coupling for evaporation-driven transport and precipitation of salt in soil. Trans. Porous Med. 110(2) (2015).
  14. 14.
    Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6) (2002).
  15. 15.
    Masson, R., Trenty, L., Zhang, Y.: Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface. J. Comput. Phys. 321 (2016).
  16. 16.
    Moeckel, G.P.: Thermodynamics of an interface. Arch. Ration. Mech. Anal. 57(3) (1975).
  17. 17.
    Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47(10) (2011).
  18. 18.
    Mosthaf, K., Helmig, R., Or, D.: Modeling and analysis of evaporation processes from porous media on the REV scale. Water Resour. Res. 50(2) (2014).
  19. 19.
    Rybak, I., Magiera, J., Helmig, R., Rohde, C.: Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci. 19(2) (2015).
  20. 20.
    Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2) (1971).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Fetzer
    • 1
  • Christoph Grüninger
    • 1
  • Bernd Flemisch
    • 1
  • Rainer Helmig
    • 1
  1. 1.Universität StuttgartStuttgartGermany

Personalised recommendations