Advertisement

A Godunov-Type Scheme for Shallow Water Equations Dedicated to Simulations of Overland Flows on Stepped Slopes

  • Nicole Goutal
  • Minh-Hoang LeEmail author
  • Philippe Ung
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 200)

Abstract

We introduce a new Godunov-type finite volume scheme for the Shallow Water equations based on a three-waves Approximate Riemann Solver. By linearizing the Bernoulli and consistency equations, the resulting scheme is positive, well-balanced and permits to improve the accuracy of numerical results compared with other methods. The proposed scheme is particularly suitable for simulations of overland flows on stepped slopes.

Keywords

Shallow-water equations Finite volume schemes Source term approximations Well–balanced schemes 

MSC2010:

65M12 76M12 35L65 

References

  1. 1.
    Alcrudo, F., Benkhaldoun, F.: Exact solutions to the riemann problem of the shallow water equations with a bottom step. Comput. Fluids 30(6), 643–671 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Audusse, E., Chalons, C., Ung, P.: A simple well-balanced and positive numerical scheme for the shallow-water system. Commun. Math. Sci. 13, 1317–1332 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bermúdez, A., Vázquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23(8), 1049–1071 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berthon, C., Chalons, C.: A fully well-balanced, positive and entropy-satisfying godunov-type method for the shallow-water equations. Math. Comput. 85, 1281–1307 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme motivated by the wet-dry front 440 (2015). https://publications.rwth-aachen.de/record/565174
  7. 7.
    Delestre, O., Cordier, S., Darboux, F., James, F.: A limitation of the hydrostatic reconstruction technique for shallow water equations. C. R. Acad. Sci. Paris Ser. I 350, 677–681 (2012)Google Scholar
  8. 8.
    Delestre, O., Lucas, C., Ksinant, P.A., Darboux, F., Laguerre, C., Vo, T.N.T., James, F., Cordier, S.: Swashes: a compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. Methods Fluids 72(3), 269–300 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Greenberg, J.M., LeRoux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 53–61 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    LeFloch, P.G., Thanh, M.D.: The riemann problem for shallow water equations with discontinous topography. Commun. Math. Sci. 5, 865–885 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire d’Hydraulique Saint Venant (LHSV)ChatouFrance
  2. 2.LHSV and EDF R& DChatouFrance

Personalised recommendations