Palindromic Discontinuous Galerkin Method

  • David Coulette
  • Emmanuel Franck
  • Philippe Helluy
  • Michel Mehrenberger
  • Laurent Navoret
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 200)

Abstract

We present a high-order scheme for approximating kinetic equations with stiff relaxation. The construction is based on a high-order, implicit, upwind Discontinuous Galerkin formulation of the transport equations. In practice, because of the triangular structure of the implicit system, the computations are explicit. High order in time is achieved thanks to a palindromic composition method. The whole method is asymptotic-preserving with respect to the stiff relaxation and remains stable even with large CFL numbers.

Keywords

Lattice boltzmann Discontinuous galerkin Implicit Composition method High order Stiff relaxation. 

MSC (2010):

65L04 65M99 

References

  1. 1.
    Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37(6), 1973–2004 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Badwaik, J., Boileau, M., Coulette, D., Franck, E., Helluy, P., Mendoza, L., Oberlin, H.: Task-based parallelization of an implicit kinetic scheme. arXiv preprint arXiv:1702.00169 (2017)
  3. 3.
    Bey, J., Wittum, G.: Downwind numbering: robust multigrid for convection-diffusion problems. Appl. Numer. Math. 23(1), 177–192 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95(1–2), 113–170 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coquel, F., Nguyen, Q.L., Postel, M., Tran, Q.H.: Large time step positivity-preserving method for multiphase flows. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 849–856. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Coulette, D., Franck, E., Helluy, P., Mehrenberger, M., Navoret, L.: Palindromic discontinuous Galerkin method for kinetic equations with stiff relaxation. arXiv preprint arXiv:1612.09422 (2016)
  8. 8.
    Graille, B.: Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann scheme as a relaxation method. J. Comput. Phy. 266, 74–88 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer Science & Business Media (2006)Google Scholar
  10. 10.
    Kahan, W., Li, R.C.: Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math. Comput. Am. Math. Soc. 66(219), 1089–1099 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Shi, X., Lin, J., Yu, Z.: Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element. Int. J. Numer. Methods Fluids 42(11), 1249–1261 (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David Coulette
    • 1
  • Emmanuel Franck
    • 1
  • Philippe Helluy
    • 1
  • Michel Mehrenberger
    • 1
  • Laurent Navoret
    • 1
  1. 1.IRMA Strasbourg, Inria TonusStrasbourgFrance

Personalised recommendations