Skip to main content

Combining Anatomy, Measurements and Manipulation of Neuronal Activity to Interrogate Circuit Function in Drosophila

  • Chapter
  • First Online:
Decoding Neural Circuit Structure and Function

Abstract

In this chapter we will discuss the application of genetics to the interrogation of neuronal function in fruit flies from a historical and modern perspective. We will review the current state-of-the-art tool kit for circuit dissection including neuronal measurements, manipulation and quantitative behavioral assessment. We will then discuss how these approaches can be productively applied to the interrogation of circuit computation by discussing recent discoveries in visual circuitry. Due to dramatic progress in recent years, these new tools have greatly expanded our understanding of the cell types and algorithmic transformations that underpin the detection of visual motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am 2:284–299

    Article  CAS  Google Scholar 

  • Akerboom J, Rivera JDV, Guilbe MMR, Malavé ECA, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284:6455–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerboom J, Chen T-W, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert JT, Gopfert MC (2015) Hearing in Drosophila. Curr Opin Neurobiol 34:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A (2015) Functional specialization of neural input elements to the Drosophila ON motion detector. Curr Biol 1–7

    Google Scholar 

  • Bahl A, Ammer G, Schilling T, Borst A (2013) Object tracking in motion-blind flies. Nat Neurosci 1–11

    Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in the rabbit retina. J Physiol 178:477–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C (2014) Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:427–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzer S (1967) Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci 58:1112–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI (2007) Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat Neurosci 10:1474–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913

    Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 1–23

    Google Scholar 

  • Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Google Scholar 

  • Chiang A-S, Lin C-Y, Chuang C-C, Chang H-M, Hsieh C-H, Yeh C-W, Shih C-T, Wu J-J, Wang G-T, Chen Y-C et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chiappe ME, Seelig JD, Reiser MB, Jayaraman V (2010) Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 20:1470–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DA, Bursztyn L, Horowitz M, Schnitzer MJ, Clandinin TR (2011) Defining the computational structure of the motion detector in Drosophila. Neuron 70:1165–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crocker A, Guan X-J, Murphy CT, Murthy M (2016) Cell-type-specific transcriptome analysis in the Drosophila mushroom body reveals memory-related changes in gene expression. Cell Rep 15:1–17

    Article  Google Scholar 

  • Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P (2009) Automated monitoring and analysis of social behavior in Drosophila. Nat Methods 6:297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries SEJ, Clandinin TR (2012) Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol 22:353–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson MH (2014) Death valley, Drosophila, and the Devonian toolkit. Annu Rev Entomol 59:51–72

    Article  CAS  PubMed  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su K, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAilibrary for conditional gene inactivation in Drosophila. Nature 448

    Google Scholar 

  • Dobritsa AA, Der Goes Van, Van Naters W, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y, Jan Y (1976) dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci 73:1684–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak DR, Bishop LG, Eckert HE (1975) On the identification of movement detectors in the fly optic lobe. J Comp Physiol A 100:5–23

    Article  Google Scholar 

  • Egelhaaf M, Borst A, Pilz B (1990) The role of GABA in detecting visual motion. Brain Res 509:156–160

    Article  CAS  PubMed  Google Scholar 

  • Erlenmeyer-Kimling L, Hirsch J (1961) Measurement of the relations between chromosomes and behavior. Science (80-) 134:1068–1069

    Google Scholar 

  • Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:442–475

    Article  Google Scholar 

  • Fisher YE, Silies M, Clandinin TR (2015a) Orientation selectivity sharpens motion detection in Drosophila. Neuron 88:1–14

    Article  CAS  Google Scholar 

  • Fisher YE, Leong JCS, Sporar K, Ketkar MD, Gohl DM, Clandinin TR, Silies M (2015b) A class of visual neurons with wide-field properties is required for local motion detection. Curr Biol 25:3178–3189

    Article  CAS  PubMed  Google Scholar 

  • Freifeld L, Clark DA, Schnitzer MJ, Horowitz MA, Clandinin TR (2013) GABAergic lateral interactions tune the early stages of visual processing in Drosophila. Neuron 78:1075–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin C, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, Schnitzer MJ (2015) High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science (80-) 350:1361–1366

    Google Scholar 

  • Gonzalez-Bellido PT, Wardill TJ, Kostyleva R, Meinertzhagen IA, Juusola M (2009) Overexpressing temperature-sensitive dynamin decelerates phototransduction and bundles microtubules in Drosophila photoreceptors. J Neurosci 29:14199–14210

    Google Scholar 

  • Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz K (1964) Optomotorische untersuchung des visuellen systems einiger augenmutanten der fruchtfliege Drosophila. Biol Cybern

    Google Scholar 

  • Gruntman E, Turner GC (2013) Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat Neurosci 16:1821–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guven-Ozkan T, Davis RL (2014) Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem 21:519–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JC (1978) Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Behav Genet 8:125–141

    Article  CAS  PubMed  Google Scholar 

  • Hallem EA, Ho GM, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979

    Google Scholar 

  • Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220

    Google Scholar 

  • Han DD, Stein D, Stevens LM (2000) Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127:573–583

    CAS  PubMed  Google Scholar 

  • Hassenstein V, Reichardt W (1956) System theoretical analysis of time, sequence and sign analysis of the motion perception of the snout-beetle Chlorophanus. German Z Naturforsch 11:513–524

    Google Scholar 

  • Hausen K (1976) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Zeitschrift Fur Naturforsch Sect C J Biosci 31:629–634

    Google Scholar 

  • Heisenberg M, Götz KG (1975) The use of mutations for the partial degradation of vision in Drosophila melanogaster. J Comp Physiol Series A 98:217–241

    Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blindH31-a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol  Series A 124:287–296

    Google Scholar 

  • Helassa N, Zhang XH, Conte I, Scaringi J, Esposito E, Bradley J, Carter T, Ogden D, Morad M, Torok K (2015) Fast-response calmodulin-based fluorescent indicators reveal rapid intracellular calcium dynamics. Sci Rep 5:15978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiesinger PR, Reiter C, Schau H, Fischbach KF (1999) Neuropil pattern formation and regulation of cell adhesion molecules in Drosophila optic lobe development depend on synaptobrevin. J Neurosci 19:7548–7556

    CAS  PubMed  Google Scholar 

  • Inada K, Kohsaka H, Takasu E, Matsunaga T, Nose A (2011) Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS ONE 6:e29019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanne JM, Wilson RI (2015) Convergence, divergence, and reconvergence in a feedforward network improves neural speed and accuracy. Neuron 88:1014–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenett A, Rubin GM, Ngo TTB, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:368–374

    Article  CAS  PubMed  Google Scholar 

  • Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A (2010) ON and OFF pathways in Drosophila motion vision. Nature 468:300–304

    Article  CAS  PubMed  Google Scholar 

  • Kalko EKV, Dukas R, Ratcliffe JM, Teeling EC, Haven N, Fattu JM, Bates ME, Simmons JA, Riquimaroux H, Surlykke A et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science (80-) 333:1888–1891

    Google Scholar 

  • Katsov AY, Clandinin TR (2008) Motion processing streams in Drosophila are behaviorally specialized. Neuron 59:322–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto T, Xie X, Wu CF, Salvaterra PM (2000) Isolation and characterization of mutants for the vesicular acetylcholine transporter gene in Drosophila melanogaster. J Neurobiol

    Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci 68:2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, Dickson BJ, Stark A (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512:91–95

    CAS  PubMed  Google Scholar 

  • Leong JCS, Esch JJ, Poole B, Ganguli S, Clandinin TR (2016) Direction selectivity in Drosophila emerges from preferred-direction enhancement and null-direction suppression. J Neurosci 36:8078–8092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WW, Wilson RI (2013) Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc Natl Acad Sci 110:10294–10299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22:18–23

    Article  CAS  PubMed  Google Scholar 

  • Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399

    Article  CAS  PubMed  Google Scholar 

  • Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A et al (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216

    Article  CAS  PubMed  Google Scholar 

  • Mauss AS, Meier M, Serbe E, Borst A (2014) Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J Neurosci 34:2254–2263

    Article  CAS  PubMed  Google Scholar 

  • Mauss AS, Pankova K, Arenz A, Nern A, Rubin GM, Borst A (2015) Neural circuit to integrate opposing motions in the visual field. Cell 162:351–362

    Article  CAS  PubMed  Google Scholar 

  • McKenna M, Monte P, Helfand SL, Woodard C, Carlson J (1989) A simple chemosensory response in Drosophila and the isolation of acj mutants in which it is affected. Proc Natl Acad Sci 86:8118–8122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A (2014) Neural circuit components of the Drosophila OFF motion vision pathway. Curr Biol 24:385–392

    Article  CAS  PubMed  Google Scholar 

  • Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305:232–263

    Google Scholar 

  • Meinertzhagen IA, Sorra KE (2001) Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog Brain Res 131:53–69

    Google Scholar 

  • Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH (2015) Body saccades of Drosophila consist of stereotyped banked turns. J Exp Biol 218:864–875

    Article  PubMed  Google Scholar 

  • Nagel KI, Wilson RI (2011) Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat Neurosci 14:208–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nern A, Pfeiffer BD, Rubin GM (2015) Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci 112:E2967–E2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J-Q, Liu L-P, Binari R, Hardy R, Shim H-S, Cavallaro A, Booker M, Pfeiffer BD, Markstein M, Wang H et al (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pak WL, Grossfield J, Arnold KS (1970) Mutants in the visual pathway of Drosophila melanogaster. Nature 222:351–354

    Article  Google Scholar 

  • Pavlou HJ, Goodwin SF (2013) Courtship behavior in Drosophila melanogaster: towards a “courtship connectome”. Curr Opin Neurobiol 23:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci 105:9715–9720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BD, Ngo T-TB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiff DF, Plett J, Mank M, Griesbeck O, Borst A (2010) Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat Neurosci 13:973–978

    Article  CAS  PubMed  Google Scholar 

  • Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 390–394

    Google Scholar 

  • Rister J, Pauls D, Schnell B, Ting C-Y, Lee C-H, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M (2007) Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56:155–170

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Alba M, Vitaladevuni SN, Mischenko Y, Lu Z, Takemura S, Scheffer L, Meinertzhagen IA, Chklovskii DB, de Polavieja GG (2011) Wiring economy and volume exclusion determine neuronal placement in the Drosophila Brain. Curr Biol 1–6

    Google Scholar 

  • Rohrbough J, Rohrbough J, Broadie K, Broadie K (2002) Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae. J Neurophysiol 88:847–860

    PubMed  Google Scholar 

  • Root CM, Masuyama K, Green DS, Enell LE, Nässel DR, Lee C-H, Wang JW (2008) A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnell B, Raghu S, Nern A, Borst A (2012) Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J Comp Physiol A

    Google Scholar 

  • Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH (2014) Cellular mechanisms for integral feedback in visually guided behavior. Proc Natl Acad Sci 2014:1–8

    Google Scholar 

  • Scott EK, Raabe T, Luo L (2002) Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Neurol. 454:470–481

    Article  PubMed  Google Scholar 

  • Seelig JD, Jayaraman V (2015) Neural dynamics for landmark orientation and angular path integration. Nature 521:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serbe E, Meier M, Leonhardt A, Borst A (2016) Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 1–13

    Google Scholar 

  • Shinomiya K, Karuppudurai T, Lin T-Y, Lu Z, Lee C-H, Meinertzhagen IA (2014) Candidate neural substrates for off-edge motion detection in Drosophila. Curr Biol 24:1062–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi O, Benzer S (1976) Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. PNAS 73:3253–3257

    Google Scholar 

  • Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR (2013) Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:111–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silies M, Gohl DM, Clandinin TR (2014) Motion-detecting circuits in flies: coming into view. Annu Rev Neurosci 37:307–327

    Article  CAS  PubMed  Google Scholar 

  • Single S, Haag J, Borst A (1997) Dendritic computation of direction selectivity and gain control in visual interneurons. J Neurosci 17:6023–6030

    CAS  PubMed  Google Scholar 

  • Stocker R, Lienhard M, Borst A, Fischbach K-F (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin

    Google Scholar 

  • Straw AD, Lee S, Dickinson MH (2010) Visual control of altitude in flying Drosophila. Curr Biol 20:1550–1556

    Article  CAS  PubMed  Google Scholar 

  • Straw AD, Branson K, Neumann TR, Dickinson MH (2011) Multi-camera real-time three-dimensional tracking of multiple flying animals. J R Soc Interface 8:395–409

    Article  PubMed  Google Scholar 

  • Strother JA, Nern A, Reiser MB (2014) Direct observation of ON and OFF pathways in the Drosophila visual system. Curr Biol 24:976–983

    Article  CAS  PubMed  Google Scholar 

  • Suster ML, Seugnet L, Bate M, Sokolowski MB (2004) Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39:240–245

    Article  CAS  PubMed  Google Scholar 

  • Suzuki DT, Grigliatti T, Williamson R (1971) A mutation (parats) causing reversible adult paralysis. PNAS 68:890–893

    Google Scholar 

  • Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351

    Article  CAS  PubMed  Google Scholar 

  • Takemura S-Y, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509:493–513

    Google Scholar 

  • Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Zhang KX, Pecot MY, Nagarkar-Jaiswal S, Lee PT, Takemura SY, McEwen JM, Nern A, Xu S, Tadros W et al (2015) Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila. Cell 163:1756–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB (2013) Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79:128–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, Leonardo A, Card GM (2014) A spike-timing mechanism for action selection. Nat Neurosci 17:1–12

    Article  Google Scholar 

  • Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting C-Y, O’Kane CJ, Tang S, Lee C-H, Hardie RC et al (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science (80-) 336:925–931

    Google Scholar 

  • Wasserman SM, Aptekar JW, Lu P, Nguyen J, Wang AL, Keles MF, Grygoruk A, Krantz DE, Larsen C, Frye MA (2015) Olfactory neuromodulation of motion vision circuitry in Drosophila. Curr Biol 25:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Rev Neurosci 36:217–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079

    Article  CAS  PubMed  Google Scholar 

  • Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science (80-) 303:366–370

    Google Scholar 

  • Yaksi E, Wilson RI (2010) Electrical coupling between olfactory glomeruli. Neuron 67:1034–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HH, Sun X, Ding X, Lin MZ, Clandinin TR, Yang HH (2016) Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 1–13

    Google Scholar 

  • Zheng L, de Polavieja GG, Wolfram V, Asyali MH, Hardie RC, Juusola M (2006) Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. J Gen Physiol 127:495–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Nern A, Zipursky SL, Frye MA (2009) Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly. Curr Biol 19:613–619

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Clandinin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fisher, Y.E., Clandinin, T.R. (2017). Combining Anatomy, Measurements and Manipulation of Neuronal Activity to Interrogate Circuit Function in Drosophila . In: Çelik, A., Wernet, M. (eds) Decoding Neural Circuit Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-57363-2_15

Download citation

Publish with us

Policies and ethics