Reflexive Regular Equivalence for Bipartite Data

  • Aaron GerowEmail author
  • Mingyang Zhou
  • Stan Matwin
  • Feng Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10233)


Bipartite data is common in data engineering and brings unique challenges, particularly when it comes to clustering tasks that impose strong structural assumptions. This work presents an unsupervised method for assessing similarity in bipartite data. The method is based on regular equivalence in graphs and uses spectral properties of a bipartite adjacency matrix to estimate similarity in both dimensions. The method is reflexive in that similarity in one dimension informs similarity in the other. The method also uses local graph transitivities, a contribution governed by its only free parameter. Reflexive regular equivalence can be used to validate assumptions of co-similarity, which are required but often untested in co-clustering analyses. The method is robust to noise and asymmetric data, making it particularly suited for cluster analysis and recommendation in data of unknown structure. (An extended preprint of this paper is available at


Bipartite Data Regular Equations Bipartite Adjacency Matrix Asymmetric Data Pairwise Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borgatti, S.P.: 2-mode concepts in social network analysis. In: Encyclopedia of Complexity and System Science, vol. 6 (2009)Google Scholar
  2. 2.
    Breiger, R.L.: The duality of persons and groups. Soc. Forces 53, 181–190 (1974)CrossRefGoogle Scholar
  3. 3.
    Codocedo, V., Napoli, A.: Lattice-based biclustering using partition pattern structures. In: ECAI 2014, pp. 213–218 (2014)Google Scholar
  4. 4.
    Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the SIGKDD 2001, pp. 269–274 (2001)Google Scholar
  5. 5.
    Doreian, P., Batagelj, V., Ferligoj, A.: Generalized blockmodeling of two-mode network data. Soc. Netw. 26(1), 29–53 (2004)CrossRefGoogle Scholar
  6. 6.
    Gerow, A., Lou, B., Duede, E., Evans, J.: Proposing ties in a dense hypergraph of academics. Social Informatics. LNCS, vol. 9471, pp. 209–226. Springer, Cham (2015). doi: 10.1007/978-3-319-27433-1_15 CrossRefGoogle Scholar
  7. 7.
    Gnatyshak, D., Ignatov, D.I., Semenov, A., Poelmans, J.: Gaining insight in social networks with biclustering and triclustering. In: Aseeva, N., Babkin, E., Kozyrev, O. (eds.) BIR 2012. LNBIP, vol. 128, pp. 162–171. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33281-4_13 CrossRefGoogle Scholar
  8. 8.
    Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E 73(2), 026120 (2006)CrossRefGoogle Scholar
  9. 9.
    Pensa, R.G., Ienco, D., Meo, R.: Hierarchical co-clustering: off-line and incremental approaches. Data Min. Knowl. Disc. 28(1), 31–64 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Shi, F., Foster, J.G., Evans, J.A.: Weaving the fabric of science: dynamic network models of science’s unfolding structure. Soc. Netw. 43, 73–85 (2015)CrossRefGoogle Scholar
  11. 11.
    Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: a survey. Handb. Comput. Mol. Biol. 9(1–20), 122–124 (2005)Google Scholar
  12. 12.
    Teng, L., Tan, K.: Finding combinatorial histone code by semi-supervised biclustering. BMC Genom. 13(1), 301 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Aaron Gerow
    • 1
    Email author
  • Mingyang Zhou
    • 2
  • Stan Matwin
    • 1
  • Feng Shi
    • 3
  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada
  2. 2.Department of Computer ScienceUniversity of ChicagoChicagoUSA
  3. 3.University of North CarolinaChapel HillUSA

Personalised recommendations