A Worst-Case Analysis of Constraint-Based Algorithms for Exact Multi-objective Combinatorial Optimization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10233)

Abstract

In a multi-objective combinatorial optimization (MOCO) problem, multiple objectives must be optimized simultaneously. In past years, several constraint-based algorithms have been proposed for finding Pareto-optimal solutions to MOCO problems that rely on repeated calls to a constraint solver. Understanding the properties of these algorithms and analyzing their performance is an important problem. Previous work has focused on empirical evaluations on benchmark instances. Such evaluations, while important, have their limitations. Our paper adopts a different, purely theoretical approach, which is based on characterizing the search space into subspaces and analyzing the worst-case performance of a MOCO algorithm in terms of the expected number of calls to the underlying constraint solver. We apply the approach to two important constraint-based MOCO algorithms. Our analysis reveals a deep connection between the search mechanism of a constraint solver and the exploration of the search space of a MOCO problem.

References

  1. 1.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer, Dordrecht (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Bjørner, N., Phan, A.D.: \(\nu \)Z - maximal satisfaction with Z3. In: Proceedings of the SCSS, pp. 632–647 (2014)Google Scholar
  3. 3.
    Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware sampling and weighted model counting for SAT. In: Proceedings of the AAAI, pp. 1722–1730 (2014)Google Scholar
  4. 4.
    Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 608–623. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_40 CrossRefGoogle Scholar
  5. 5.
    Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in sat witness generator. In: Proceedings of the DAC, pp. 1–6 (2014)Google Scholar
  6. 6.
    Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for constraint satisfaction problems. In: Proceedings of the AAAI, pp. 15–21 (2002)Google Scholar
  7. 7.
    Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  8. 8.
    Gavanelli, M.: An algorithm for multi-criteria optimization in CSPs. In: Proceedings of the ECAI, pp. 136–140 (2002)Google Scholar
  9. 9.
    Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of the AAAI, pp. 431–437 (1998)Google Scholar
  10. 10.
    Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial spaces using XOR constraints. In: Proceedings of the NIPS, pp. 481–488 (2006)Google Scholar
  11. 11.
    Hartert, R., Schaus, P.: A support-based algorithm for the bi-objective pareto constraint. In: Proceedings of the AAAI, pp. 2674–2679 (2014)Google Scholar
  12. 12.
    Le Pape, C., Couronné, P., Vergamini, D., Gosselin, V.: Time-versus-capacity compromises in project scheduling. In: Proceedings of the Thirteenth Workshop of the UK Planning Special Interest Group, Strathclyde, UK (1994)Google Scholar
  13. 13.
    Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: Solving multi-objective Pseudo-Boolean problems. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 56–69. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0_9 CrossRefGoogle Scholar
  14. 14.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, Mineola (1998)MATHGoogle Scholar
  15. 15.
    Rayside, D., Estler, H.C., Jackson, D.: The guided improvement algorithm for exact, general purpose, many-objective combinatorial optimization. Technical report, MIT-CSAIL-TR-2009-033 (2009)Google Scholar
  16. 16.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  17. 17.
    Sadeh, N., Fox, M.: Variable and value ordering heuristics for the job shop scheduling constraint satisfaction problem. Artif. Intell. 86(1), 1–41 (1996)CrossRefGoogle Scholar
  18. 18.
    Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge (1989)Google Scholar
  20. 20.
    van Wassenhove, L., Gelders, L.: Solving a bicriterion scheduling problem. Eur. J. Oper. Res. 4(1), 42–48 (1980)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.East China University of Science and TechnologyShanghaiChina
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations