Advertisement

Visualization of Traffic Bottlenecks: Combining Traffic Congestion with Complicated Crossings

Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Daily mobility patterns in highly populated urban environments rely on a well-functioning effective road network. Nevertheless, traffic bottlenecks are typical for urban environments with periodic traffic congestion. In this paper, we focus on the investigation of how traffic congestion is related with complicated crossings. First, we select an approach for the classification of the complexity of road partitions and the derivation of complicated crossings based on geodata from OpenStreetMap (OSM). Second, we calculate traffic congestions using Floating Taxi Data (FTD) from Shanghai in 2007. Then, we develop a matching technique to link the congestion and complicated crossings, and subsequently define the concept of traffic bottlenecks represented by polygons. The bottlenecks indicate locations where the transportation infrastructure is complex and traffic congestion appears periodically. Finally, we select suitable cartographic representations of traffic bottlenecks in potential thematic vehicle traffic maps.

Keywords

Floating taxi data (FTD) Volunteered geographic information (VGI) Complicated crossings Traffic bottleneck Traffic congestion Transportation infrastructure Traffic maps 

Notes

Acknowledgements

The described taxi Floating Car Data set of Shanghai (‘SUVnet-Trace Data,’ http://wirelesslab.sjtu.edu.cn/taxi_trace_data.html) was obtained from the Wireless and Sensor networks Lab (WnSN) at Shanghai Jiao Tong University. We would like to thank the Laboratory for Wireless and Sensor Networks at Shanghai Jiao Tong University, especially Prof. Min-You Wu and Jia Peng, for providing access to this data.

References

  1. Andrienko, N., & Andrienko, G. (2007). Designing visual analytics methods for massive collections of movement data. Cartographica, 42(2), 117–138.CrossRefGoogle Scholar
  2. Andrienko, N., & Andrienko, G. (2011). Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 17(2), 205–219.CrossRefGoogle Scholar
  3. Andrienko, N., & Andrienko, G. (2013). Visual analytics of movement: An overview of methods, tools, and procedures. Information Visualization, 12(1), 3–24.CrossRefGoogle Scholar
  4. Andrienko, N., Andrienko, G., & Rinzivillo, S. (2015). Exploiting spatial abstraction in predictive analytics of vehicle traffic. ISPRS International Journal of Geo-Information, 4(2), 591–606.CrossRefGoogle Scholar
  5. Andrienko, N., Andrienko, G., & Rinzivillo, S. (2016). Leveraging spatial abstraction in traffic analysis and forecasting with visual analytics. Information Systems, 57, 172–194.CrossRefGoogle Scholar
  6. Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering points to identify the clustering structure. In ACM SIGMOD International Conference on Management of data (pp. 49–60). ACM Press.Google Scholar
  7. Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1–101.CrossRefGoogle Scholar
  8. Brakatsoulas, S., Pfoser, D., & Tryfona, N. (2004). Modeling, storing and mining moving object databases. Proceedings of the International Database Engineering and Applications Symposium 2004 (IDEAS ’04) (pp. 68–77).Google Scholar
  9. Chen, W., Guo, F., & Wang, F. Y. (2015). A survey of traffic data visualization. IEEE Transactions on Intelligent Transportation Systems, 16(6), 2970–2984.CrossRefGoogle Scholar
  10. Costa, G., Manco, G., & Masciari, E. (2014). Dealing with trajectory streams by clustering and mathematical transforms. Journal of Intelligent Information Systems, 42, 155–177.CrossRefGoogle Scholar
  11. Dewulf, B., Neutens, T., Vanlommel, M., Logghe, S., De Maeyer, P., Witlox, F., et al. (2015). Examining commuting patterns using floating car data and circular statistics: Exploring the use of new methods and visualizations to study travel times. Journal of Transport Geography, 48, 41–51.CrossRefGoogle Scholar
  12. Duan, Z., Liu, L., & Sun, W. (2009). Traffic congestion analysis of Shanghai road network based on floating car data. International Conference on Transportation Engineering 2009 (pp. 2731–2736).Google Scholar
  13. Gühnemann, A., Schäfer, R.-P., Thiessenhusen, K.-U., & Wagner, P. (2004). monitoring traffic and emissions by floating car data. WORKING PAPER ITS-WP-04-07.Google Scholar
  14. Haworth, J., Shawe-Taylor, J., Cheng, T., & Wang, J. (2014). Local online kernel ridge regression for forecasting of urban travel times. Transportation Research Part C: Emerging Technologies, 46, 151–178.CrossRefGoogle Scholar
  15. Jarvis, R. A. (1973). On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters, 2, 18–21.CrossRefGoogle Scholar
  16. Kang, J. H., Welbourne, W., Stewart, B., & Borriello, G. (2004). Extracting places from traces of locations. In Proceedings of the 2nd ACM International Workshop on Wireless Mobile Applications and Services on WLAN hotspots (WMASH ‘04) (pp. 110–118).Google Scholar
  17. Keler, A., & Krisp, J. M. (2016). Visual analysis of floating taxi data based on interconnected and timestamped area selections. In G. Gartner, M. Jobst, & H. Huang (Eds.), Progress in cartography, EuroCarto 2015 (pp. 115–131). Cham: Springer International Publishing.Google Scholar
  18. Keler, A., Ding, L., & Krisp, J. M. (2016). Visualization of traffic congestion based on floating taxi data. Kartographische Nachrichten, 66(1), 7–13.Google Scholar
  19. Körner, M. (2011). Nutzungsmöglichkeiten von Floating Car Data zur Verkehrsflussoptimierung. In J. Strobl, T. Blaschke, G Griesebner (Eds.), Angewandte Geoinformatik 2011, Beiträge zum 23. AGIT-Symposium Salzburg (pp. 381–386). Berlin/Offenbach: Wichmann.Google Scholar
  20. Krisp, J. M., & Keler, A. (2015). Car navigation—computing routes that avoid complicated crossings. International Journal of Geographical Information Science, 29(11), 1988–2000.CrossRefGoogle Scholar
  21. Lan, J., Long, C., Wong, R. C.-W., Chen, Y., Fu, Y., Guo, D., Liu, S., Ge, Y., Zhou, Y., & Li, J. (2014). A new framework for traffic anomaly detection. In Proceedings of the 2014 SIAM International Conference on DATA MINING (pp. 875–883).Google Scholar
  22. Li, J., & Zuo, L. (2004). Shanghai urban elevated roads and metropolis traffic. Urban Roads Bridges & Flood Control, 21(6), 14–17.Google Scholar
  23. Li, D., Fu, B., Wang, Y., Lu, G., Berezin, Y., Stanley, H. E., et al. (2015a). Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences, 112(3), 669–672.CrossRefGoogle Scholar
  24. Li, H., Kulik, L., & Ramamohanarao, K. (2015b). Robust inferences of travel paths from GPS trajectories. International Journal of Geographical Information Science, 29(12), 2194–2222.CrossRefGoogle Scholar
  25. Liu, X., & Ban, Y. (2013). Uncovering spatio-temporal cluster patterns using massive floating car data. ISPRS International Journal of Geo-Information, 2, 371–384.CrossRefGoogle Scholar
  26. Long, J. C., Gao, Z. Y., Ren, H. L., & Lian, A. P. (2008). Urban traffic congestion propagation and bottleneck identification. Science in China Series F: Information Sciences, 51(7), 948–964.CrossRefGoogle Scholar
  27. Protschky, V., Ruhhammer, C., & Feit, S. (2015). Learning traffic light parameters with floating car data. In IEEE 18th International Conference on Intelligent Transportation Systems (ITSC 2015) (pp. 2438–2443).Google Scholar
  28. Ranacher, P., Brunauer, R., Van der Spek, S. C., & Reich, S. (2016). A model to estimate and interpret the energy-efficiency of movement patterns in urban road traffic. Computers, Environment and Urban Systems, 59, 152–163.CrossRefGoogle Scholar
  29. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., & Andrienko, G. (2008). Visually driven analysis of movement data by progressive clustering. Information Visualization, 7(3–4), 225–239.CrossRefGoogle Scholar
  30. Robinson, R. (1984). Problems in the urban environment: traffic congestion and its effects. In Wollongong studies in geography (Vol. 14). Department of Geography, University of Wollongong: NSW, Australia.Google Scholar
  31. Sohr, A., Brockfeld, E., & Krieg, S. (2010). Quality of floating car data. In Conference Proceedings, paper nr 02392, 12th World Conference on Transport Research (WCTR). Lisbon, Portugal. Retrieved July, 11–15, 2010 from www.digitalpapers.org.
  32. Stanica, R., Fiore, M., & Malandrino, F. (2013). Offloading floating car data. Proceedings of the 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (pp. 1–9).Google Scholar
  33. Wen, H., Sun, J., & Zhang, X. (2014). Study on traffic congestion patterns of large city in China taking Beijing as an example. Procedia—Social and Behavioral Sciences, 138, 482–491.CrossRefGoogle Scholar
  34. Xu, X., Li, X., Hu, Y., & Peng, Z. (2012). A novel algorithm to identifying vehicle travel path in elevated road area based on GPS trajectory data. Frontiers of Earth Science, 6(4), 354–363.CrossRefGoogle Scholar
  35. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., & Aberer, K. (2013). Semantic trajectories: Mobility data computation and annotation. In ACM transactions on intelligent systems and technology (TIST)—Special sections on paraphrasing; intelligent systems for socially aware computing; social computing, behavioral-cultural modeling, and prediction, 4(3), 1–38.Google Scholar
  36. Yuan, Q., Liu, Z., Li, J., Zhang, J., & Yang, F. (2014). A traffic congestion detection and information dissemination scheme for urban expressways using vehicular networks. Transportation Research Part C: Emerging Technologies, 47(2), 114–127.CrossRefGoogle Scholar
  37. Zhang, Y. M. (2004). The thinking of relieving the congestion of elevated road system. Traffic and Transportation, 5, 37–38.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Geography, Applied GeoinformaticsUniversity of AugsburgAugsburgGermany
  2. 2.Chair of CartographyTechnical University of MunichMunichGermany

Personalised recommendations