Advertisement

Electrocatalysis for the Hydrogen Economy

  • Ioannis Katsounaros
  • Marc T. M. KoperEmail author
Chapter

Abstract

This chapter deals with the concept of “hydrogen economy”, which was introduced by John O.M’ Bockris in 1972. We summarize the fundamental principles and the progress for the reactions relevant to the hydrogen economy, namely the hydrogen and oxygen evolution for water electrolyzers, and the hydrogen oxidation and oxygen reduction for fuel cells. The activity of each reaction can be correlated to a single descriptor, i.e. the adsorption energy of a key reaction intermediate, following a volcano-type relationship. Highly active materials can be prepared with the aid of modern computational and experimental tools. Nevertheless, to develop catalysts that are substantially more active and reach the performance of ideal catalysts, the focus must be placed on materials that can break the energetic scaling relations between intermediates. The systems of choice are acidic water electrolyzers or fuel cells, using noble metals for the catalytic material, despite the great progress made in the field of alkaline systems. However, to realize the concept of hydrogen economy on a large scale, the electrode material for either reaction must combine activity, stability and abundance.

Keywords

Oxygen Reduction Reaction Hydrogen Evolution Reaction Oxygen Evolution Reaction Oxygen Reduction Reaction Activity Hydrogen Economy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Verne J (1874) The mysterious islandGoogle Scholar
  2. 2.
    Bockris JO (1972) A hydrogen economy. Science 176:1323–1323Google Scholar
  3. 3.
    van Troostwijk AP, Deiman JR (1789) Sur une manière de décomposer l’eau en air inflammable & en air vital. Obs Phys 35:369–378Google Scholar
  4. 4.
    Grove WR (1839) On voltaic series and the combination of gases by platinum. Philos Mag 14:127–130Google Scholar
  5. 5.
    Schönbein CF (1839) On the voltaic polarization of certain solid and fluid substances. Philos Mag 14:43–45Google Scholar
  6. 6.
    Kinoshita K (1992) Oxygen electrochemistry. Electrochemical oxygen technology. Wiley, New York, pp 19–112Google Scholar
  7. 7.
    Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602:L89–L94CrossRefGoogle Scholar
  8. 8.
    Dau H, Limberg C, Reier T et al (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761CrossRefGoogle Scholar
  9. 9.
    Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53:102–121CrossRefGoogle Scholar
  10. 10.
    Katsounaros I, Schneider WB, Meier JC et al (2012) Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Phys Chem Chem Phys 14:7384–7391CrossRefGoogle Scholar
  11. 11.
    Katsounaros I, Schneider WB, Meier JC et al (2013) The impact of spectator species on the interaction of H2O2 with platinum—implications for the oxygen reduction reaction pathways. Phys Chem Chem Phys 15:8058–8068CrossRefGoogle Scholar
  12. 12.
    Sitta E, Gómez-Marín AM, Aldaz A, Feliu JM (2013) Electrocatalysis of H2O2 reduction/oxidation at model platinum surfaces. Electrochem Commun 33:39–42CrossRefGoogle Scholar
  13. 13.
    Gómez-Marín AM, Rizo R, Feliu JM (2013) Some reflections on the understanding of the oxygen reduction reaction at Pt(111). Beilstein J Nanotechnol 4:956–967CrossRefGoogle Scholar
  14. 14.
    Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319:178–184CrossRefGoogle Scholar
  15. 15.
    Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem 660:254–260CrossRefGoogle Scholar
  16. 16.
    Rossmeisl J, Karlberg GS, Jaramillo T, Nørskov JK (2009) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346CrossRefGoogle Scholar
  17. 17.
    Rossmeisl J, Qu Z-W, Zhu H et al (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89CrossRefGoogle Scholar
  18. 18.
    Koper MTM (2013) Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps. J Solid State Electrochem 17:339–344CrossRefGoogle Scholar
  19. 19.
    Bligaard T, Nørskov JK, Dahl S et al (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217CrossRefGoogle Scholar
  20. 20.
    Trasatti S (1980) Electrocatalysis by oxides—attempt at a unifying approach. J Electroanal Chem 111:125–131CrossRefGoogle Scholar
  21. 21.
    Cherevko S, Zeradjanin AR, Topalov AA et al (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6:2219–2223CrossRefGoogle Scholar
  22. 22.
    Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772CrossRefGoogle Scholar
  23. 23.
    Lee Y, Suntivich J, May KJ et al (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404CrossRefGoogle Scholar
  24. 24.
    Man IC, Su H-Y, Calle-Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165CrossRefGoogle Scholar
  25. 25.
    Wohlfahrt-Mehrens M, Heitbaum J (1987) Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J Electroanal Chem 237:251–260CrossRefGoogle Scholar
  26. 26.
    Diaz-Morales O, Calle-Vallejo F, de Munck C, Koper MTM (2013) Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chem Sci 4:2334–2343CrossRefGoogle Scholar
  27. 27.
    Willsau J, Wolter O, Heitbaum J (1985) Does the oxide layer take part in the oxygen evolution reaction on platinum? J Electroanal Chem 195:299–306CrossRefGoogle Scholar
  28. 28.
    Yeo RS, Orehotsky J, Visscher W, Srinivasan S (1981) Ruthenium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes. J Electrochem Soc 128:1900–1904CrossRefGoogle Scholar
  29. 29.
    Kötz R, Stucki S, Scherson D, Kolb DM (1984) In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J Electroanal Chem 172:211–219CrossRefGoogle Scholar
  30. 30.
    Cherevko S, Zeradjanin AR, Keeley GP, Mayrhofer KJJ (2014) A comparative study on gold and platinum dissolution in acidic and alkaline media. J Electrochem Soc 161:H822–H830CrossRefGoogle Scholar
  31. 31.
    Cherevko S, Geiger S, Kasian O et al (2016) Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 262:170–180CrossRefGoogle Scholar
  32. 32.
    Kötz R, Stucki S (1986) Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media. Electrochim Acta 31:1311–1316CrossRefGoogle Scholar
  33. 33.
    Angelinetta C, Trasatti S, Atanasoska LD et al (1989) Effect of preparation on the surface and electrocatalytic properties of RuO2 + IrO2 mixed oxide electrodes. Mater Chem Phys 22:231–247CrossRefGoogle Scholar
  34. 34.
    Jirkovský J, Makarova M, Krtil P (2006) Particle size dependence of oxygen evolution reaction on nanocrystalline RuO2 and Ru0.8Co0.2 \({\rm O}^{-}_{\rm 2x} \). Electrochem Commun 8:1417–1422Google Scholar
  35. 35.
    Jirkovský J, Hoffmannová H, Klementová M, Krtil P (2006) Particle size dependence of the electrocatalytic activity of nanocrystalline RuO2 electrodes. J Electrochem Soc 153:E111–E118CrossRefGoogle Scholar
  36. 36.
    Abbott DF, Lebedev D, Waltar K et al (2016) Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS. Chem Mater 28:6591–6604CrossRefGoogle Scholar
  37. 37.
    ten Kortenaar MV, Vente JF, Ijdo DJW et al (1995) Oxygen evolution and reduction on iridium oxide compounds. J Power Sources 56:51–60CrossRefGoogle Scholar
  38. 38.
    Diaz-Morales O, Raaijman S, Kortlever R et al (2016) Iridium-based double perovskites for efficient water oxidation in acid media. Nat Commun 7:art no 12363Google Scholar
  39. 39.
    Frydendal R, Paoli EA, Knudsen BP et al (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1:2075–2081CrossRefGoogle Scholar
  40. 40.
    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987CrossRefGoogle Scholar
  41. 41.
    Tseung ACC, Jasem S (1977) Oxygen evolution on semiconducting oxides. Electrochim Acta 22:31–34CrossRefGoogle Scholar
  42. 42.
    Jasem SM, Tseung ACC (1979) A potentiostatic pulse study of oxygen evolution on Teflon-bonded nickel-cobalt oxide electrodes. J Electrochem Soc 126:1353–1360CrossRefGoogle Scholar
  43. 43.
    Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29:1503–1512CrossRefGoogle Scholar
  44. 44.
    Bockris JO, Otagawa T (1983) Mechanism of oxygen evolution on perovskites. J Phys Chem 87:2960–2971CrossRefGoogle Scholar
  45. 45.
    Bockris JO, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131:290–302CrossRefGoogle Scholar
  46. 46.
    Suntivich J, May KJ, Gasteiger HA et al (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385CrossRefGoogle Scholar
  47. 47.
    May KJ, Carlton CE, Stoerzinger KA et al (2012) Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett 3:3264–3270CrossRefGoogle Scholar
  48. 48.
    Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075CrossRefGoogle Scholar
  49. 49.
    Nørskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  50. 50.
    Markovic NM, Gasteiger HA, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144:1591CrossRefGoogle Scholar
  51. 51.
    Maciá MD, Campiña JM, Herrero E, Feliu JM (2004) On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J Electroanal Chem 564:141–150CrossRefGoogle Scholar
  52. 52.
    Kuzume A, Herrero E, Feliu JM (2007) Oxygen reduction on stepped platinum surfaces in acidic media. J Electroanal Chem 599:333–343CrossRefGoogle Scholar
  53. 53.
    Rizo R, Herrero E, Feliu JM (2013) Oxygen reduction reaction on stepped platinum surfaces in alkaline media. Phys Chem Chem Phys 15:15416–15425CrossRefGoogle Scholar
  54. 54.
    Hoshi N, Nakamura M, Hitotsuyanagi A (2013) Active sites for the oxygen reduction reaction on the high index planes of Pt. Electrochim Acta 112:899–904CrossRefGoogle Scholar
  55. 55.
    Van Hardeveld R, Hartog F (1969) The statistics of surface atoms and surface sites on metal crystals. Surf Sci 15:189–230CrossRefGoogle Scholar
  56. 56.
    Romanowski W (1969) Equilibrium forms of very small metallic crystals. Surf Sci 18:373–388CrossRefGoogle Scholar
  57. 57.
    Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3:2054–2073CrossRefGoogle Scholar
  58. 58.
    Calle-Vallejo F, Loffreda D, Koper MTM, Sautet P (2015) Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nature Chem 7:403–410CrossRefGoogle Scholar
  59. 59.
    Calle-Vallejo F, Tymoczko J, Colic V et al (2015) Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350:185–189CrossRefGoogle Scholar
  60. 60.
    Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137:845–848CrossRefGoogle Scholar
  61. 61.
    Tritsaris GA, Greeley J, Rossmeisl J, Nørskov JK (2011) Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catal Lett 141:909–913CrossRefGoogle Scholar
  62. 62.
    Shinozaki K, Morimoto Y, Pivovar BS, Kocha SS (2016) Re-examination of the Pt particle size effect on the oxygen reduction reaction for ultrathin uniform Pt/C catalyst layers without influence from Nafion. Electrochim Acta 213:783–790CrossRefGoogle Scholar
  63. 63.
    Perez-Alonso FJ, McCarthy DN, Nierhoff A et al (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51:4641–4643CrossRefGoogle Scholar
  64. 64.
    Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719CrossRefGoogle Scholar
  65. 65.
    Matsuzawa K, Fukushima T, Inaba M (2010) Shape-controlled platinum nanoparticles of different sizes and their electrochemical properties. Electrocatal 1:169–177CrossRefGoogle Scholar
  66. 66.
    Devivaraprasad R, Ramesh R, Naresh N et al (2014) Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 30:8995–9006CrossRefGoogle Scholar
  67. 67.
    Tian N, Zhou Z-Y, Sun S-G (2008) Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J Phys Chem C 112:19801–19817CrossRefGoogle Scholar
  68. 68.
    Huang X, Zhao Z, Fan J et al (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having 411 high-index facets. J Am Chem Soc 133:4718–4721CrossRefGoogle Scholar
  69. 69.
    Wang C, Ma L, Liao L et al (2013) A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Sci Rep 3:art no 2580Google Scholar
  70. 70.
    Devivaraprasad R, Kar T, Chakraborty A et al (2016) Reconstruction and dissolution of shape-controlled Pt nanoparticles in acidic electrolytes. Phys Chem Chem Phys 18:11220–11232CrossRefGoogle Scholar
  71. 71.
    Li D, Wang C, Strmcnik DS et al (2014) Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy Environ Sci 7:4061–4069CrossRefGoogle Scholar
  72. 72.
    Borup R, Meyers J, Pivovar B et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRefGoogle Scholar
  73. 73.
    Reiser CA, Bregoli L, Patterson TW et al (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8:A273–A276CrossRefGoogle Scholar
  74. 74.
    Shao-Horn Y, Sheng WC, Chen S et al (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305CrossRefGoogle Scholar
  75. 75.
    Meier JC, Galeano C, Katsounaros I et al (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal 2:832–843CrossRefGoogle Scholar
  76. 76.
    Chen S, Gasteiger HA, Hayakawa K et al (2010) Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J Electrochem Soc 157:A82–A97CrossRefGoogle Scholar
  77. 77.
    Debe MK (2013) Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J Electrochem Soc 160:F522–F534CrossRefGoogle Scholar
  78. 78.
    Debe MK, Schmoeckel AK, Vernstrom GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161:1002–1011CrossRefGoogle Scholar
  79. 79.
    Stamenkovic V, Mun BS, Mayrhofer KJJ et al (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901CrossRefGoogle Scholar
  80. 80.
    Greeley J, Stephens IEL, Bondarenko AS et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556CrossRefGoogle Scholar
  81. 81.
    Jalan VM, Landsman DA (1978) Noble metal-refractory metal alloys as catalysts and method for making. US Patent 4,186,110Google Scholar
  82. 82.
    Jalan VM (1978) Noble metal/vanadium alloy catalyst and method for making. US Patent 4,202,934Google Scholar
  83. 83.
    Landsman DA, Luczak FJ (1980) Noble metal-chromium alloy catalysts and electrochemical cell. US Patent 4,316,944Google Scholar
  84. 84.
    Luczak FJ, Landsman DA (1983) Ternary fuel cell catalysts containing platinum, cobalt and chromium. US Patent 4,447,506Google Scholar
  85. 85.
    Luczak FJ, Landsman DA (1985) Ordered ternary fuel cell catalysts containing platinum and cobalt and method for making the catalysts. US Patent 4,711,829Google Scholar
  86. 86.
    Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224CrossRefGoogle Scholar
  87. 87.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422CrossRefGoogle Scholar
  88. 88.
    Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756CrossRefGoogle Scholar
  89. 89.
    Strasser P, Koh S, Anniyev T et al (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460CrossRefGoogle Scholar
  90. 90.
    Adzic RR, Zhang J, Sasaki K et al (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262CrossRefGoogle Scholar
  91. 91.
    Stamenkovic VR, Mun BS, Arenz M et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247CrossRefGoogle Scholar
  92. 92.
    Nilekar AU, Xu Y, Zhang J et al (2007) Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal 46:276–284CrossRefGoogle Scholar
  93. 93.
    Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew Chem Int Ed 46:8988–8991CrossRefGoogle Scholar
  94. 94.
    Mani P, Srivastava R, Strasser P (2011) Dealloyed binary PtM3 (M = Cu Co, Ni) and ternary PtNi3M (M = Cu Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J Power Sources 196:666–673CrossRefGoogle Scholar
  95. 95.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ et al (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819CrossRefGoogle Scholar
  96. 96.
    Bandarenka AS, Varela AS, Karamad M et al (2012) Design of an active site towards optimal electrocatalysis: overlayers, surface alloys and near-surface alloys of Cu/Pt(111). Angew Chem Int Ed 51:11845–11848CrossRefGoogle Scholar
  97. 97.
    Stamenkovic VR, Fowler B, Mun BS et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRefGoogle Scholar
  98. 98.
    Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10:638–644CrossRefGoogle Scholar
  99. 99.
    Wang D, Xin HL, Hovden R et al (2012) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87CrossRefGoogle Scholar
  100. 100.
    Cui C-H, Li H-H, Liu X-J et al (2012) Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal 2:916–924CrossRefGoogle Scholar
  101. 101.
    Jung N, Chung Y-H, Chung DY et al (2013) Chemical tuning of electrochemical properties of Pt-skin surfaces for highly active oxygen reduction reactions. Phys Chem Chem Phys 15:17079–17083CrossRefGoogle Scholar
  102. 102.
    Li Q, Wu L, Wu G et al (2015) New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 15:2468–2473CrossRefGoogle Scholar
  103. 103.
    Hodnik N, Jeyabharathi C, Meier JC et al (2014) Effect of ordering of PtCu3 nanoparticle structure on the activity and stability for the oxygen reduction reaction. Phys Chem Chem Phys 16:13610–13615CrossRefGoogle Scholar
  104. 104.
    Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed 52:8526–8544CrossRefGoogle Scholar
  105. 105.
    Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657CrossRefGoogle Scholar
  106. 106.
    Pickering HW (1983) Characteristic features of alloy polarization curves. Corrosion Sci 23:1107–1120CrossRefGoogle Scholar
  107. 107.
    Erlebacher J, Aziz MJ, Karma A et al (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453CrossRefGoogle Scholar
  108. 108.
    Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625CrossRefGoogle Scholar
  109. 109.
    Strasser P (2009) Dealloyed core-shell fuel cell electrocatalysts. Rev Chem Eng 25:255–295CrossRefGoogle Scholar
  110. 110.
    Brankovic SR, Wang JX, Adžić RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179CrossRefGoogle Scholar
  111. 111.
    Zhang J, Vukmirovic MB, Xu Y et al (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  112. 112.
    Vukmirovic MB, Zhang J, Sasaki K et al (2007) Platinum monolayer electrocatalysts for oxygen reduction. Electrochim Acta 52:2257–2263CrossRefGoogle Scholar
  113. 113.
    Debe MK, Steinbach AJ, Vernstrom GD et al (2011) Extraordinary oxygen reduction activity of Pt3Ni7. J Electrochem Soc 158:B910–B918CrossRefGoogle Scholar
  114. 114.
    Chen C, Kang Y, Huo Z et al (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343CrossRefGoogle Scholar
  115. 115.
    Schuppert AK, Savan A, Ludwig A, Mayrhofer KJJ (2014) Potential-resolved dissolution of Pt-Cu: a thin-film material library study. Electrochim Acta 144:332–340CrossRefGoogle Scholar
  116. 116.
    Yu Z, Zhang J, Liu Z et al (2012) Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells. J Phys Chem C 116:19877–19885CrossRefGoogle Scholar
  117. 117.
    Kelly MJ, Fafilek G, Besenhard JO et al (2005) Contaminant absorption and conductivity in polymer electrolyte membranes. J Power Sources 145:249–252CrossRefGoogle Scholar
  118. 118.
    Malacrida P, Escudero-Escribano M, Verdaguer-Casadevall A et al (2014) Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase. J Mater Chem A 2:4234–4243CrossRefGoogle Scholar
  119. 119.
    Vej-Hansen UG, Rossmeisl J, Stephens IEL, Schiøtz J (2016) Correlation between diffusion barriers and alloying energy in binary alloys. Phys Chem Chem Phys 18:3302–3307CrossRefGoogle Scholar
  120. 120.
    Escudero-Escribano M, Malacrida P, Hansen MH et al (2016) Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352:73–76CrossRefGoogle Scholar
  121. 121.
    Pedersen AF, Ulrikkeholm ET, Escudero-Escribano M et al (2016) Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. Nano Energy 29:249–260CrossRefGoogle Scholar
  122. 122.
    Ulrikkeholm ET, Pedersen AF, Vej-Hansen UG et al (2016) PtxGd alloy formation on Pt(111): preparation and structural characterization. Surf Sci 652:114–122CrossRefGoogle Scholar
  123. 123.
    Hernandez-Fernandez P, Masini F, McCarthy DN et al (2014) Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat Chem 6:732–738Google Scholar
  124. 124.
    Velázquez-Palenzuela A, Masini F, Pedersen AF et al (2015) The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J Catal 328:297–307CrossRefGoogle Scholar
  125. 125.
    Escudero-Escribano M, Verdaguer-Casadevall A, Malacrida P et al (2012) Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J Am Chem Soc 134:16476–16479CrossRefGoogle Scholar
  126. 126.
    Kondo S, Nakamura M, Maki N, Hoshi N (2009) Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 113:12625–12628CrossRefGoogle Scholar
  127. 127.
    Hara M, Linke U, Wandlowski T (2007) Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4. Electrochim Acta 52:5733–5748CrossRefGoogle Scholar
  128. 128.
    Chen Z, Higgins D, Yu A et al (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192CrossRefGoogle Scholar
  129. 129.
    Zitolo A, Goellner V, Armel V et al (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14:937–942CrossRefGoogle Scholar
  130. 130.
    Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–1213CrossRefGoogle Scholar
  131. 131.
    Alt H, Binder H, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28:8–19CrossRefGoogle Scholar
  132. 132.
    Jahnke H, Schönborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. In: Schäfer FP, Gerischer H, Willig F et al (eds) Physical and chemical applications of dyestuffs. Springer, Berlin, pp 133–181CrossRefGoogle Scholar
  133. 133.
    Bagotzky VS, Tarasevich MR, Radyushkina KA et al (1978) Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J Power Sources 2:233–240CrossRefGoogle Scholar
  134. 134.
    van Veen JAR, van Baar JF, Kroese KJ (1981) Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen. J Chem Soc Faraday Trans 77:2827–2843CrossRefGoogle Scholar
  135. 135.
    Fuhrmann A, Wiesener K, Iliev I et al (1981) A contribution to the characterization of heat-treated electrocatalytically active tetramethoxy-phenylporphyrinato-cobalt-II. J Power Sources 6:69–81CrossRefGoogle Scholar
  136. 136.
    Gruenig G, Wiesener K, Gamburzev S et al (1983) Investigations of catalysts from the pyrolyzates of cobalt-containing and metal-free dibenzotetraazaannulenes on active carbon for oxygen electrodes in an acid medium. J Electroanal Chem 159:155–162CrossRefGoogle Scholar
  137. 137.
    Scherson DA, Gupta SL, Fierro C et al (1983) Cobalt tetramethoxyphenyl porphyrin—emission Mossbauer spectroscopy and O2 reduction electrochemical studies. Electrochim Acta 28:1205–1209CrossRefGoogle Scholar
  138. 138.
    Van Der Putten A, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on pyrolysed carbon-supported transition metal chelates. J Electroanal Chem 205:233–244CrossRefGoogle Scholar
  139. 139.
    Gupta S, Tryk D, Bae I et al (1989) Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 19:19–27CrossRefGoogle Scholar
  140. 140.
    Wang H, Côté R, Faubert G et al (1999) Effect of the pre-treatment of carbon black supports on the activity of Fe-based electrocatalysts for the reduction of oxygen. J Phys Chem B 103:2042–2049CrossRefGoogle Scholar
  141. 141.
    Lefevre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74CrossRefGoogle Scholar
  142. 142.
    Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66CrossRefGoogle Scholar
  143. 143.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447CrossRefGoogle Scholar
  144. 144.
    Zagal JH, Koper MTM (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chem Int Ed 55:14510–14521CrossRefGoogle Scholar
  145. 145.
    Jaouen F, Proietti E, Lefèvre M et al (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130CrossRefGoogle Scholar
  146. 146.
    Choi CH, Baldizzone C, Grote J-P et al (2015) Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy. Angew Chem Int Ed 54:12753–12757CrossRefGoogle Scholar
  147. 147.
    Markovic N, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229CrossRefGoogle Scholar
  148. 148.
    Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals. J Electroanal Chem 39:163–184CrossRefGoogle Scholar
  149. 149.
    Conway BE, Jerkiewicz G (2000) Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the “volcano curve” for cathodic H2 evolution kinetics. Electrochim Acta 45:4075–4083CrossRefGoogle Scholar
  150. 150.
    Auinger M, Katsounaros I, Meier JC et al (2011) Near-surface ion distribution and buffer effects during electrochemical reactions. Phys Chem Chem Phys 13:16384–16394CrossRefGoogle Scholar
  151. 151.
    Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157:B1529–B1536CrossRefGoogle Scholar
  152. 152.
    Seto K, Iannelli A, Love B, Lipkowski J (1987) The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. J Electroanal Chem 226:351–360CrossRefGoogle Scholar
  153. 153.
    Vesborg PCK, Seger B, Chorkendorff I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951–957CrossRefGoogle Scholar
  154. 154.
    Marković NM, Sarraf ST, Gasteiger HA, Ross PN (1996) Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J Chem Soc Faraday Trans 92:3719–3725CrossRefGoogle Scholar
  155. 155.
    Subbaraman R, Tripkovic D, Strmcnik D et al (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334:1256–1260CrossRefGoogle Scholar
  156. 156.
    Gong M, Wang D-Y, Chen C-C et al (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:28–46CrossRefGoogle Scholar
  157. 157.
    LeRoy RL (1979) Analysis of time-variation effects in water electrolyzers. J Electrochem Soc 126:1674–1682CrossRefGoogle Scholar
  158. 158.
    Soares DM, Teschke O, Torriani I (1992) Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. J Electrochem Soc 139:98–105CrossRefGoogle Scholar
  159. 159.
    Genorio B, Strmcnik D, Subbaraman R et al (2010) Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat Mater 9:998–1003CrossRefGoogle Scholar
  160. 160.
    Zalitis CM, Kramer D, Kucernak AR (2013) Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys Chem Chem Phys 15:4329–4340CrossRefGoogle Scholar
  161. 161.
    Zhuang Z, Giles SA, Zheng J, et al (2016) Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat Commun 7:art. no. 10141Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Forschungszentrum Jülich GmbHHelmholtz-Institut Erlangen-Nürnberg (HI ERN)ErlangenGermany
  2. 2.Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands

Personalised recommendations