Advertisement

Multi-timed Bisimulation for Distributed Timed Automata

  • James Ortiz
  • Moussa AmraniEmail author
  • Pierre-Yves Schobbens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10227)

Abstract

Timed bisimulation is an important technique which can be used for reasoning about behavioral equivalence between different components of a complex real-time system. The verification of timed bisimulation is a difficult and challenging problem because the state explosion caused by both functional and timing constraints must be taken into account. Timed bisimulation was shown decidable for Timed Automata (TA). Distributed TA and TA with Independent Clocks (icTA) were introduced to model Distributed Real-time Systems. They are a variant of TA with local clocks that may not run at the same rate. In this paper, we first propose to extend the theory of Timed Labeled Transition Systems to Multi-Timed Labeled Transition Systems, and relate them by an extension of timed bisimulation to multi-timed bisimulation. We prove the decidability of multi-timed bisimulation and present an EXPTIME algorithm for deciding whether two icTA are multi-timed bisimilar. For multi-timed bisimilarity, an extension of the standard refinement algorithm is described.

References

  1. 1.
    Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed timed automata with independently evolving clocks. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 82–97. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85361-9_10 CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Balaguer, S., Chatain, T.: Avoiding shared clocks in networks of timed automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 100–114. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32940-1_9 CrossRefGoogle Scholar
  4. 4.
    Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27755-2_3 CrossRefGoogle Scholar
  6. 6.
    Blom, S., Orzan, S.: A distributed algorithm for strong bisimulation reduction of state spaces. Electr. Notes Theor. Comput. Sci. 68(4), 523–538 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst. Des. 24(3), 281–320 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm for checking alternating timed simulation. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 73–87. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04368-0_8 CrossRefGoogle Scholar
  9. 9.
    Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993). doi: 10.1007/3-540-56496-9_24 CrossRefGoogle Scholar
  10. 10.
    De Biasi, M., Snickars, C., Landernäs, K., Isaksson, A.: Simulation of process control with WirelessHART networks subject to clock drift. In: COMPSAC (2008)Google Scholar
  11. 11.
    Krishnan, P.: Distributed timed automata. In: Workshop on Distributed Systems (1999)Google Scholar
  12. 12.
    Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic — and back. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–539. Springer, Heidelberg (1995). doi: 10.1007/3-540-60246-1_158 CrossRefGoogle Scholar
  13. 13.
    Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  14. 14.
    Monot, A., Navet, N., Bavoux, B.: Impact of clock drifts on CAN frame response time distributions. In: ETFA, Toulouse, France (2011)Google Scholar
  15. 15.
    Ortiz, J., Schobbens, P.-Y.: Extending timed bisimulation for distributed timed systems. Technical report, University of Namur (2016). http://www.info.fundp.ac.be/~jor/Multi-TimedReport/
  16. 16.
    Ortiz, J., Legay, A., Schobbens, P.-Y.: Distributed event clock automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 250–263. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22256-6_23 CrossRefGoogle Scholar
  17. 17.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998). doi: 10.1007/BFb0055349 CrossRefGoogle Scholar
  19. 19.
    Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimulations. Form. Methods Syst. Des. 18(1), 25–68 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Weise, C., Lenzkes, D.: Efficient scaling-invariant checking of timed bisimulation. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 177–188. Springer, Heidelberg (1997). doi: 10.1007/BFb0023458 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • James Ortiz
    • 1
  • Moussa Amrani
    • 1
    Email author
  • Pierre-Yves Schobbens
    • 1
  1. 1.Computer Science FacultyUniversity of NamurNamurBelgium

Personalised recommendations