Parametric Model Checking Timed Automata Under Non-Zenoness Assumption

  • Étienne André
  • Hoang Gia Nguyen
  • Laure Petrucci
  • Jun Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10227)


Real-time systems often involve hard timing constraints and concurrency, and are notoriously hard to design or verify. Given a model of a real-time system and a property, parametric model-checking aims at synthesizing timing valuations such that the model satisfies the property. However, the counter-example returned by such a procedure may be Zeno (an infinite number of discrete actions occurring in a finite time), which is unrealistic. We show here that synthesizing parameter valuations such that at least one counterexample run is non-Zeno is undecidable for parametric timed automata (PTAs). Still, we propose a semi-algorithm based on a transformation of PTAs into Clock Upper Bound PTAs to derive all valuations whenever it terminates, and some of them otherwise.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993)Google Scholar
  3. 3.
    André, É.: What’s decidable about parametric timed automata? In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham (2016). doi: 10.1007/978-3-319-29510-7_3 CrossRefGoogle Scholar
  4. 4.
    André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. IJFCS 20(5), 819–836 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32759-9_6 CrossRefGoogle Scholar
  6. 6.
    André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 400–416. Springer, Cham (2016). doi: 10.1007/978-3-319-47846-3_25 CrossRefGoogle Scholar
  7. 7.
    André, É., Liu, Y., Sun, J., Dong, J.S.: Parameter synthesis for hierarchical concurrent real-time systems. Real-Time Syst. 50(5–6), 620–679 (2014)CrossRefzbMATHGoogle Scholar
  8. 8.
    André, É., Markey, N.: Language preservation problems in parametric timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 27–43. Springer, Cham (2015). doi: 10.1007/978-3-319-22975-1_3 CrossRefGoogle Scholar
  9. 9.
    Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C.-H., Ruess, H.: Compositional parameter synthesis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 60–68. Springer, Cham (2016). doi: 10.1007/978-3-319-48989-6_4 Google Scholar
  10. 10.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bowman, H., Gómez, R.: How to stop time stopping. Formal Aspects Comput. 18(4), 459–493 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In: FMCAD, pp. 165–168. IEEE (2013)Google Scholar
  13. 13.
    Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE Trans. Softw. Eng. 34(6), 844–859 (2008)CrossRefGoogle Scholar
  14. 14.
    Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33386-6_22 CrossRefGoogle Scholar
  15. 15.
    Gómez, R., Bowman, H.: Efficient detection of Zeno runs in timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 195–210. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75454-1_15 CrossRefGoogle Scholar
  16. 16.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient emptiness check for timed Büchi automata. Formal Methods Syst. Des. 40(2), 122–146 (2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. JLAP 52–53, 183–220 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. Trans. Softw. Eng. 41(5), 445–461 (2015)CrossRefzbMATHGoogle Scholar
  19. 19.
    Khatib, L., Muscettola, N., Havelund, K.: Mapping temporal planning constraints into timed automata. In: TIME, pp. 21–27. IEEE Computer Society (2001)Google Scholar
  20. 20.
    Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata. Trans. Petri Nets Models Concurr. 5, 141–159 (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. STTT 1(1–2), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper Saddle River (1967)zbMATHGoogle Scholar
  23. 23.
    Schupp, S., Ábrahám, E., Chen, X., Makhlouf, I.B., Frehse, G., Sankaranarayanan, S., Kowalewski, S.: Current challenges in the verification of hybrid systems. In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 8–24. Springer, Cham (2015). doi: 10.1007/978-3-319-25141-7_2 CrossRefGoogle Scholar
  24. 24.
    Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02658-4_59 CrossRefGoogle Scholar
  25. 25.
    Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999). doi: 10.1007/3-540-48778-6_18 CrossRefGoogle Scholar
  26. 26.
    Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata emptiness efficiently. Formal Methods Syst. Des. 26(3), 267–292 (2005)CrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J.S., Yang, X., Li, X.: A systematic study on explicit-state non-Zenoness checking for timed automata. IEEE Trans. Softw. Eng. 41(1), 3–18 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Étienne André
    • 1
  • Hoang Gia Nguyen
    • 1
  • Laure Petrucci
    • 1
  • Jun Sun
    • 2
  1. 1.LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance
  2. 2.ISTDSingapore University of Technology and DesignSingaporeSingapore

Personalised recommendations