Compact Proof Witnesses

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10227)

Abstract

Proof witnesses are proof artifacts showing correctness of programs wrt. safety properties. The recent past has seen a rising interest in witnesses as (a) proofs in a proof-carrying-code context, (b) certificates for the correct functioning of verification tools, or simply (c) exchange formats for (partial) verification results. As witnesses in all theses scenarios need to be stored and processed, witnesses are required to be as small as possible. However, software verification tools – the prime suppliers of witnesses – do not necessarily construct small witnesses.

In this paper, we present a formal account of proof witnesses. We introduce the concept of weakenings, reducing the complexity of proof witnesses while preserving the ability of witnessing safety. We develop a weakening technique for a specific class of program analyses, and prove it to be sound. Finally, we experimentally demonstrate our weakening technique to indeed achieve a size reduction of proof witnesses.

Keywords

Software verification Proof witness Proof re-use 

Notes

Acknowledgements

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901). The experiments were run in the VerifierCloud hosted by Dirk Beyer and his group.

References

  1. 1.
    Albert, E., Arenas, P., Puebla, G., Hermenegildo, M.: Reduced certificates for abstraction-carrying code. In: Etalle, S., Truszczyński, M. (eds.) Logic Programming. LNCS, vol. 4079, pp. 163–178. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Besson, F., Jensen, T., Turpin, T.: Small witnesses for abstract interpretation-based proofs. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 268–283. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6_19 CrossRefGoogle Scholar
  3. 3.
    Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8_25 CrossRefGoogle Scholar
  4. 4.
    Beyer, D.: Reliable and reproducible competition results with benchexec and witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9_55 CrossRefGoogle Scholar
  5. 5.
    Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchanging verification results between verifiers. In: Zimmermann et al. [31], pp. 326–337Google Scholar
  6. 6.
    Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model checking: a technique to pass information between verifiers. In: FSE, pp. 57:1–57:11. ACM, New York (2012)Google Scholar
  7. 7.
    Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: concretizing the convergence of model checking and program analysis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3_51 CrossRefGoogle Scholar
  8. 8.
    Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_16 CrossRefGoogle Scholar
  9. 9.
    Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 146–162. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1_11 CrossRefGoogle Scholar
  10. 10.
    Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer, Cham (2015). doi:10.1007/978-3-319-23404-5_12 CrossRefGoogle Scholar
  11. 11.
    Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75698-9_2 CrossRefGoogle Scholar
  12. 12.
    Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)CrossRefMATHGoogle Scholar
  13. 13.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM, New York (1977)Google Scholar
  14. 14.
    Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: a certifying model checker for infinite-state concurrent systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2_22 CrossRefGoogle Scholar
  15. 15.
    D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for formal software verification. TCAD 27(7), 1165–1178 (2008)Google Scholar
  16. 16.
    Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive validity cores for safety properties. In: Zimmermann et al. [31], pp. 314–325Google Scholar
  17. 17.
    Giacobazzi, R., Ranzato, F.: Example-guided abstraction simplification. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 211–222. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1_18 CrossRefGoogle Scholar
  18. 18.
    Giacobazzi, R., Ranzato, F.: Correctness kernels of abstract interpretations. Inf. Comput. 237, 187–203 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). doi:10.1007/3-540-63166-6_10 CrossRefGoogle Scholar
  20. 20.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70. ACM, New York (2002)Google Scholar
  21. 21.
    Ivrii, A., Gurfinkel, A., Belov, A.: Small inductive safe invariants. In: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October 2014, pp. 115–122. IEEE (2014)Google Scholar
  22. 22.
    Jakobs, M.-C.: Speed up configurable certificate validation by certificate reduction and partitioning. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 159–174. Springer, Cham (2015). doi:10.1007/978-3-319-22969-0_12 CrossRefGoogle Scholar
  23. 23.
    Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4), 21:1–21:54 (2009)CrossRefGoogle Scholar
  24. 24.
    Necula, G., Lee, P.: Efficient representation and validation of proofs. In: LICS, pp. 93–104. IEEE (1998).Google Scholar
  25. 25.
    Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM, New York (1997)Google Scholar
  26. 26.
    Necula, G.C., Rahul, S.P.: Oracle-based checking of untrusted software. In: POPL, pp. 142–154. ACM, New York (2001)Google Scholar
  27. 27.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis, 1st edn. Springer, Berlin (2005). (corr. 2. print. edn.)MATHGoogle Scholar
  28. 28.
    Rose, E.: Lightweight bytecode verification. J. Autom. Reason. 31(3–4), 303–334 (2003)CrossRefMATHGoogle Scholar
  29. 29.
    Seo, S., Yang, H., Yi, K., Han, T.: Goal-directed weakening of abstract interpretation results. In: TOPLAS, October 2007, vol. 29(6) (2007)Google Scholar
  30. 30.
    Weiser, M.: Program slicing. In: ICSE, pp. 439–449. IEEE Press, Piscataway (1981)Google Scholar
  31. 31.
    Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.): Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016. ACM, New York (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Paderborn UniversityPaderbornGermany

Personalised recommendations