Nonlinear Negotiation Approaches for Complex-Network Optimization: A Study Inspired by Wi-Fi Channel Assignment

  • Ivan Marsa-MaestreEmail author
  • Enrique de la Hoz
  • Jose Manuel Gimenez-Guzman
  • David Orden
  • Mark Klein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10238)


In this paper, we study a problem family inspired by a prominent network optimization problem (graph coloring), enriched and extended towards a real-world application (Wi-Fi channel assignment). We propose a utility model based on this scenario, and we generate an extensive set of test cases, against which we run both a complete information optimizer and two nonlinear negotiation approaches –a hill-climber and an approach based on simulated annealing (SA). We show that, for the larger-scale scenarios, the SA negotiation approach significantly outperforms the optimizer while running in roughly one tenth of the computation time. Also, we point out interesting patterns regarding the relative performance of the two approaches depending on the properties of the underlying graphs.


Access Point Cluster Coefficient Channel Assignment Graph Coloring Hill Climber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Spanish Ministry of Economy and Competitiveness grants TIN2016-80622-P, TIN2014-61627-EXP, MTM2014-54207, and TEC2013-45183-R and by the University of Alcalá through CCG2015/EXP-053.


  1. 1.
    Bazzi, A.: On uncoordinated multi user multi RAT combining. In: Vehicular Technology Conference (VTC Fall), pp. 1–6. IEEE, 5–8 September 2011Google Scholar
  2. 2.
    Aardal, K.I., Van Hoesel, S.P., Koster, A.M., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Oper. Res. 153(1), 79–129 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abusubaih, M., Gross, J., Wolisz, A.: An inter-access point coordination protocol for dynamic channel selection in IEEE 802.11 wireless LANs. In: 2007 1st IEEE Workshop on Autonomic Communications and Network Management (ACNM 2007) (2007)Google Scholar
  4. 4.
    Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: \(\lambda \)-coloring of graphs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395–406. Springer, Heidelberg (2000). doi: 10.1007/3-540-46541-3_33 CrossRefGoogle Scholar
  5. 5.
    Chieochan, S., Hossain, E., Diamond, J.: Channel assignment schemes for infrastructure-based 802.11 WLANs: A survey. IEEE Commun. Surv. Tutorials 12(1), 124–136 (2010)CrossRefGoogle Scholar
  6. 6.
    De Jonge, D., Sierra, C.: NB\(^3\): A multilateral negotiation algorithm for large, non-linear agreement spaces with limited time. Auton. Agent. Multi-Agent Syst. 29(5), 896–942 (2015)CrossRefGoogle Scholar
  7. 7.
    Tragos, E.Z., Zeadally, S., Fragkiadakis, A.G., Siris, V.A.: Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Commun. Surv. Tutorials 15(3), 1108–1135 (2013). Third QuarterCrossRefGoogle Scholar
  8. 8.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: Optimal negotiation strategies for agents with incomplete information. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 377–392. Springer, Heidelberg (2002). doi: 10.1007/3-540-45448-9_28 CrossRefGoogle Scholar
  9. 9.
    Fatima, S., Kraus, S., Wooldridge, M.: Principles of Automated Negotiation. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  10. 10.
    Geier, J.: How to: Define Minimum SNR Values for Signal Coverage.
  11. 11.
    Green, D.B., Obaidat, A.S.: An accurate line of sight propagation performance model for ad-hoc 802.11 wireless LAN (WLAN) devices. In: 2002 IEEE International Conference on Communications, ICC 2002, vol. 5, pp. 3424–3428 (2002)Google Scholar
  12. 12.
    Griggs, J.R., et al.: Graph labellings with variable weights, a survey. Discrete Appl. Math. 157(12), 2646–2658 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grubshtein, A., Meisels, A.: A distributed cooperative approach for optimizing a family of network games. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Proceedings of the 5th International Symposium on Intelligent Distributed Computing-IDC 2011. Intelligent Distributed Computing V, vol. 382, pp. 49–62. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Hattori, H., Klein, M., Ito, T.: Using iterative narrowing to enable multi-party negotiations with multiple interdependent issues. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2007, pp. 247:1–247:3. ACM, New York (2007)Google Scholar
  15. 15.
    de la Hoz, E., Gimenez-Guzman, J.M., Marsa-Maestre, I., Orden, D.: Automated negotiation for resource assignment in wireless surveillance sensor networks. Sensors 15(11), 29547–29568 (2015)CrossRefGoogle Scholar
  16. 16.
    Jansen, P., Perez, R.: Constrained structural design optimization via a parallel augmented lagrangian particle swarm optimization approach. Comput. Struct. 89(13–14), 1352–1366 (2011)CrossRefGoogle Scholar
  17. 17.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  18. 18.
    Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts. Group Decis. Negot. 12(2), 111–125 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31955-9_3 CrossRefGoogle Scholar
  20. 20.
    Lang, F., Fink, A.: Learning from the metaheuristics: Protocols for automated negotiations. Group Decis. Negot. 24(2), 299–332 (2015)CrossRefGoogle Scholar
  21. 21.
    Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Marsa-Maestre, I., Lopez-Carmona, M.A., Velasco, J.R., Ito, T., Klein, M., Fujita, K.: Balancing utility and deal probability for auction-based negotiations in highly nonlinear utility spaces. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence, pp. 214–219. Morgan Kaufmann Publishers Inc., San Francisco (2009)Google Scholar
  23. 23.
    McDiarmid, C., Reed, B.: Channel assignment and weighted coloring. Networks 36(2), 114–117 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mishra, A., Banerjee, S., Arbaugh, W.: Weighted coloring based channel assignment for WLANs. ACM SIGMOBILE Mob. Comput. Commun. Rev. 9(3), 19–31 (2005)CrossRefGoogle Scholar
  25. 25.
    Mishra, A., Brik, V., Banerjee, S., Srinivasan, A., Arbaugh, W.A.: A client-driven approach for channel management in wireless LANs. In: INFOCOM (2006)Google Scholar
  26. 26.
    Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading. J. Econ. Theory 29(2), 265–281 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Narayanan, L.: Channel assignment and graph multicoloring. In: Handbook of Wireless Networks and Mobile Computing, vol. 8, pp. 71–94 (2002)Google Scholar
  28. 28.
    Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Ng, S.W.K., Szymanski, T.H.: Interference measurements in an 802.11n wireless mesh network testbed. In: 25th IEEE Canadian Conference on Electrical Computer Engineering (CCECE), pp. 1–6, April 2012Google Scholar
  30. 30.
    Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution algorithms. In: Pelikan, M., Pelikan, K., CantúPaz, E. (eds.) Scalable Optimization via Probabilistic Modeling, vol. 33, pp. 223–248. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Ren, F., Zhang, M., Sim, K.M.: Adaptive conceding strategies for automated trading agents in dynamic, open markets. Wirel. Healthc. 46(3), 704–716 (2009)Google Scholar
  32. 32.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sharp, A.: Distance coloring. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 510–521. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75520-3_46 CrossRefGoogle Scholar
  34. 34.
    Sim, K.M., Shi, B.: Concurrent negotiation and coordination for grid resource coallocation. Trans. Syst. Man Cber. Part B 40(3), 753–766 (2010)CrossRefGoogle Scholar
  35. 35.
    Tuza, Z., Gutin, G., Plurnmer, M., Tucker, A., Burke, E., Werra, D., Kingston, J.: Colorings and related topics. In: Handbook of Graph Theory. Discrete Mathematics and its Applications, pp. 340–483. CRC Press, December 2003Google Scholar
  36. 36.
    Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69(1), 17–20 (1947)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ivan Marsa-Maestre
    • 1
    Email author
  • Enrique de la Hoz
    • 1
  • Jose Manuel Gimenez-Guzman
    • 1
  • David Orden
    • 2
  • Mark Klein
    • 3
  1. 1.Computer Engineering DepartmentUniversity of AlcalaAlcalá de HenaresSpain
  2. 2.Department of Physics and MathematicsUniversity of AlcalaAlcalá de HenaresSpain
  3. 3.Center for Collective IntelligenceMITCambridgeUSA

Personalised recommendations