Advertisement

On the Randomization of Indices Selection for Differential Evolution

  • Roman SenkerikEmail author
  • Michal Pluhacek
  • Adam Viktorin
  • Tomas Kadavy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 573)

Abstract

This research deals with the hybridization of two softcomputing fields, which are the chaos theory and evolutionary algorithms. This paper investigates the utilization of the two-dimensional discrete chaotic systems, which are Burgers and Lozi maps, as the chaotic pseudo random number generators (CPRNGs) embedded into the selected heuristics, which is differential evolution algorithm (DE). Through the utilization of either chaotic systems or identical identified pseudo random number distribution, it is possible to fully keep or remove the hidden complex chaotic dynamics from the generated pseudo random data series. Experiments are focused on the extended investigation, whether the different randomization types with different pseudo random numbers distribution or hidden complex chaotic dynamics providing the unique sequencing are more beneficial to the heuristic performance. This research utilizes set of 4 selected benchmark functions, and totally four different randomizations; further results are compared against canonical DE.

Keywords

Differential evolution Complex dynamics Deterministic chaos Randomization Burgers map Lozi map 

Notes

Acknowledgements

This work was supported by Grant Agency of the Czech Republic - GACR P103/15/06700S, further by financial support of research project NPU I No. MSMT-7778/2014 by the Ministry of Education of the Czech Republic and also by the European Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, and by Internal Grant Agency of Tomas Bata University under the projects No. IGA/CEBIA-Tech/2017/004.

References

  1. 1.
    Price, K.V., An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F., (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd., London (1999)Google Scholar
  2. 2.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  3. 3.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  4. 4.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  5. 5.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution – an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  6. 6.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)CrossRefGoogle Scholar
  7. 7.
    Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential evolution. Inf. Sci. 181(12), 2488–2511 (2011)CrossRefGoogle Scholar
  8. 8.
    Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evolution for limited memory optimization problems. Inf. Sci. 181(12), 2469–2487 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Iacca, G., Caraffini, F., Neri, F.: Compact differential evolution light: high performance despite limited memory requirement and modest computational overhead. J. Comput. Sci. Technol. 27(5), 1056–1076 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zamuda, A., Brest, J.: Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015)CrossRefGoogle Scholar
  11. 11.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  12. 12.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math. Appl. 60(4), 1088–1104 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zelinka, I.: SOMA — self-organizing migrating algorithm. In: Zelinka, I. (ed.) New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing, vol. 141, pp. 167–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    dos Santos Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  15. 15.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput. Math. Appl. 66(2), 122–134 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Chaos PSO algorithm driven alternately by two different chaotic maps – an initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), 20–23 June 2013, pp. 2444–2449 (2013)Google Scholar
  17. 17.
    Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with Eensemble of chaotic systems. Swarm Evol. Comput. 25, 29–35 (2015)CrossRefGoogle Scholar
  18. 18.
    Metlicka, M., Davendra, D.: Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol. Comput. 25, 15–28 (2015)CrossRefGoogle Scholar
  19. 19.
    dos Santos Coelho, L., Ayala, H.V.H., Mariani, V.C.: A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Appl. Math. Comput. 234, 452–459 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Senkerik, R., Pluhacek, M., Zelinka, I., Davendra, D., Janostik, J.: Preliminary study on the randomization and sequencing for the chaos embedded heuristic. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A.E., Snasel, V., Alimi, A.M. (eds.) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015. AISC, vol. 427, pp. 591–601. Springer, Cham (2016). doi: 10.1007/978-3-319-29504-6_55 CrossRefGoogle Scholar
  21. 21.
    Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity – mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)CrossRefGoogle Scholar
  22. 22.
    Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)CrossRefGoogle Scholar
  23. 23.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution – A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  24. 24.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, New York (2003)zbMATHGoogle Scholar
  25. 25.
    Senkerik, R., Pluhacek, M., Kominkova Oplatkova, Z., Davendra, D.: On the parameter settings for the chaotic dynamics embedded differential evolution. In: 2015 IEEE Congress on Evolutionary Computation (CEC), 25–28 May 2015, pp. 1410–1417 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roman Senkerik
    • 1
    Email author
  • Michal Pluhacek
    • 1
  • Adam Viktorin
    • 1
  • Tomas Kadavy
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations