Morphological Texture Description from Multispectral Skin Images in Cosmetology

  • Joris Corvo
  • Jesus Angulo
  • Josselin Breugnot
  • Sylvie Bordes
  • Brigitte Closs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10225)

Abstract

In this paper, we propose methods to extract texture features from multispectral skin images. We first describe the acquisition protocol and corrections we applied on multispectral skin images. In the framework of a cosmetology application, a skin morphological texture evaluation is then proposed using either multivariate approach on multispectral dataset or marginal on a dataset whose dimensionality has been reduced by a multivariate analysis based on PCA.

Keywords

Multispectral imaging Mathematical morphology Texture analysis Cosmetology 

References

  1. 1.
    Arvis, V., Debain, C., Berducat, M., Benassi, A.: Generalization of the cooccurrence matrix for colour images: application to colour texture classification. Image Anal. Stereology 23(1), 63–72 (2011)CrossRefGoogle Scholar
  2. 2.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  3. 3.
    Avena, G., Ricotta, C., Volpe, F.: The influence of principal component analysis on the spatial structure of a multispectral dataset. Int. J. Remote Sens. 20(17), 3367–3376 (1999)CrossRefGoogle Scholar
  4. 4.
    Baraldi, A., Parmiggiani, F.: An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans. Geosci. Remote Sens. 33(2), 293–304 (1995)CrossRefGoogle Scholar
  5. 5.
    Baronti, S., Casini, A., Lotti, F., Porcinai, S.: Principal component analysis of visible and near-infrared multispectral images of works of art. Chemometr. Intell. Lab. Syst. 39(1), 103–114 (1997)CrossRefGoogle Scholar
  6. 6.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)Google Scholar
  7. 7.
    Bohling, G.: Introduction to geostatistics and variogram analysis. Kansas Geol. Surv. 1, 1–20 (2005)Google Scholar
  8. 8.
    Corvo, J.: Characterization of cosmetologic data from multispectral skin images. Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris (2016)Google Scholar
  9. 9.
    Corvo, J., Angulo, J., Breugnot, J., Borbes, S., Closs, B.: Common reduced spaces of representation applied to multispectral texture analysis in cosmetology. In: SPIE BiOS, p. 970104. International Society for Optics and Photonics (2016)Google Scholar
  10. 10.
    Drimbarean, A., Whelan, P.F.: Experiments in colour texture analysis. Pattern Recogn. Lett. 22(10), 1161–1167 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATHGoogle Scholar
  12. 12.
    Hanbury, A., Kandaswamy, U., Adjeroh, D.A.: Illumination-invariant morphological texture classification. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On, pp. 377–386. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hanbury, A.G., Serra, J.: Morphological operators on the unit circle. IEEE Trans. Image Process. 10(12), 1842–1850 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)CrossRefGoogle Scholar
  15. 15.
    Healey, G., Wang, L.: Illumination-invariant recognition of texture in color images. JOSA A 12(9), 1877–1883 (1995)CrossRefGoogle Scholar
  16. 16.
    Jain, A., Healey, G.: A multiscale representation including opponent color features for texture recognition. IEEE Trans. Image Process. 7(1), 124–128 (1998)CrossRefGoogle Scholar
  17. 17.
    Jolivot, R.: Développement d’un outil d’imagerie dédié à l’acquisition, l’analyse et a la caractérisation multispectrale des lésions dermatologiques. Ph.D. thesis, Le2i laboratory, Universite de Bourgogne (2011)Google Scholar
  18. 18.
    Jolivot, R., Benezeth, Y., Marzani, F.: Skin parameter map retrieval from a dedicated multispectral imaging system applied to dermatology/cosmetology. Int. J. Biomed. Imaging 2013, 26–41 (2013)CrossRefGoogle Scholar
  19. 19.
    Kukkonen, S., Kälviäinen, H., Parkkinen, J.: Color features for quality control in ceramic tile industry. Opt. Eng. 40(2), 170–177 (2001)CrossRefGoogle Scholar
  20. 20.
    Lanir, J., Maltz, M., Rotman, S.R.: Comparing multispectral image fusion methods for a target detection task. Opt. Eng. 46(6), 066402 (2007)CrossRefGoogle Scholar
  21. 21.
    Li, P., Cheng, T., Guo, J.: Multivariate image texture by multivariate variogram for multispectral image classification. Photogram. Eng. Remote Sens. 75(2), 147–157 (2009)CrossRefGoogle Scholar
  22. 22.
    Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)CrossRefGoogle Scholar
  23. 23.
    Matheron, G.: Eléments pour une théorie des milieux poreux. Masson (1967)Google Scholar
  24. 24.
    Messer, K., Kittler, J.: A region-based image database system using colour and texture. Pattern Recogn. Lett. 20(11), 1323–1330 (1999)CrossRefGoogle Scholar
  25. 25.
    Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recogn. 37(5), 965–976 (2004)CrossRefGoogle Scholar
  26. 26.
    Palm, C., Keysers, D., Lehmann, T., Spitzer, K.: Gabor filtering of complex hue/saturation images for color texture classification. In: International Conference on Computer Vision, vol. 2, pp. 45–49 (2000)Google Scholar
  27. 27.
    Paola, J., Schowengerdt, R.: A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. Int. J. Remote Sens. 16(16), 3033–3058 (1995)CrossRefGoogle Scholar
  28. 28.
    Paquit, V.C., Tobin, K.W., Price, J.R., Mériaudeau, F.: 3d and multispectral imaging for subcutaneous veins detection. Opt. Express 17(14), 11360–11365 (2009)CrossRefGoogle Scholar
  29. 29.
    Serra, J.: Image Analysis and Mathematical Morphology V.1. Academic Press, Cambridge (1982)MATHGoogle Scholar
  30. 30.
    Song, K.Y., Kittler, J., Petrou, M.: Defect detection in random colour textures. Image Vis. Comput. 14(9), 667–683 (1996)CrossRefGoogle Scholar
  31. 31.
    Suen, P.H., Healey, G.: Modeling and classifying color textures using random fields in a random environment. Pattern Recogn. 32(6), 1009–1017 (1999)CrossRefGoogle Scholar
  32. 32.
    Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)CrossRefMATHGoogle Scholar
  33. 33.
    Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10, 66–71 (2009)Google Scholar
  34. 34.
    Van de Wouwer, G., Scheunders, P., Livens, S., Van Dyck, D.: Wavelet correlation signatures for color texture characterization. Pattern Recogn. 32(3), 443–451 (1999)CrossRefGoogle Scholar
  35. 35.
    Yamaguchi, M., Mitsui, M., Murakami, Y., Fukuda, H., Ohyama, N., Kubota, Y.: Multispectral color imaging for dermatology: application in inflammatory and immunologic diseases. In: Color and Imaging Conference, vol. 2005, pp. 52–58. Society for Imaging Science and Technology (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Joris Corvo
    • 1
  • Jesus Angulo
    • 2
  • Josselin Breugnot
    • 1
  • Sylvie Bordes
    • 1
  • Brigitte Closs
    • 1
  1. 1.SILABBrive CedexFrance
  2. 2.Center for Mathematical Morphology, Mines-ParisTech, PSL Research UniversityFontainebleauFrance

Personalised recommendations